МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

------МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ
------Кафедра Металлических и деревянных конструкций

ПРИМЕРЫ РАСЧЁТА РАСПОРНЫХ КОНСТРУКЦИЙ (Гнутоклеёные рамы и рамы с соединением ригеля и стойки на зубчатый шип)

Методические указания к курсовому и дипломному проектированию по курсу «Конструкции из дерева и пластмасс»

МОСКВА

Составители

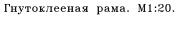
доцент, кандидат технических наук Е.Т.Серова, старший преподаватель А.Ю.Ушаков.

Рецензенты

Профессор кафедры Строительные конструкции Военно- технического университета Фролов А.Ю. Профессор, доктор технических наук Арленинов Д.К.(МГСУ) Доцент, кандидат архитектуры Аксёнова И.В.(МГСУ)

ПРИМЕР 1. ГНУТОКЛЕЕНАЯ ТРЕХШАРНИРНАЯ РАМА.

<u>Задание</u>: запроектировать поперечник сельскохозяйственного здания из гнутоклееных трехшарнирных рам.


Исходные данные:

Пролет рам 24м, шаг 3м. и длина здания 60м. Ограждающие конструкции покрытия - мягкая черепица RUFLEX 8 кг/м² по рабочему настилу и прогонам. Район строительства – г. Белгород. Здание по степени ответственности относится ко II классу (ү=0,95) приложение 7* [2]. Температурно-влажностные условия эксплуатации A₁ табл.1[1]. Все конструкции заводского изготовления. Материал-древесина из сосны 2-го сорта, металлические конструкции – сталь марки C235 ГОСТ 27772-88*. Склеевание рам – клеем ФРФ-50к.

Геометрические размеры.

Геометрические размеры рамы показаны на рис.1.1и 1.2.

Расчетный пролет рамы I=23,6м. Уклон ригеля 1:4, т.е. $tg\alpha=1/4=0.25$; угол наклона ригеля $\alpha=14^{\circ}02$; $sin\alpha=0.24$; $cos\alpha=0.97$. Высота рамы в коньке f=6.95м. (высота по оси рамы).

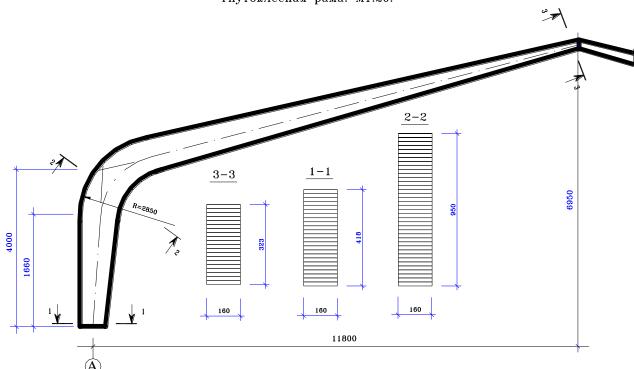
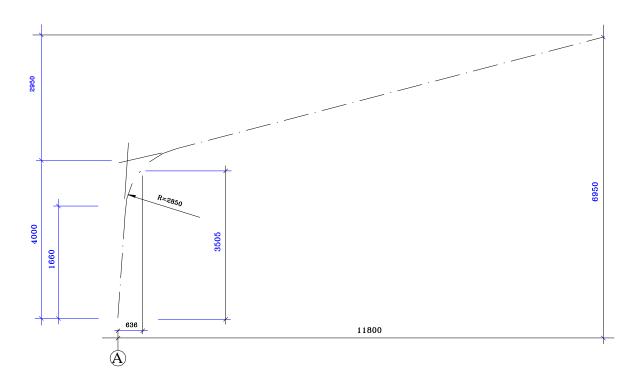



Рис 1.1

Гнутоклееная рама. М1:20.

Тогда высота стойки от верха фундамента до точки пересечения касательных по осям стойки и ригеля.

$$H = f - \frac{l}{2} \cdot \text{tg } \alpha = 6.95 - 11,8 \cdot 0.25 = 4.0 \text{m}.$$

По условиям гнутья, толщина досок после фрезеровки должна приниматься не более 1.6 \div 2.5 см. Принимаем доски толщиной после фрезеровки 1.9 см. Радиус гнутой части принимаем равным r=3 м > r_{min} =150· δ =150·0.019= =2.85 м., где δ – толщина склеиваемых досок.

Угол в карнизной гнутой части между осями ригеля и стойки:

$$\gamma = 90^{\circ} + \alpha = 90^{\circ} + 14^{\circ}02^{\circ} = 104^{\circ}02^{\circ}$$
.

Максимальный изгибающий момент будет в среднем сечении гнутой части рамы, которое является биссектрисой этого угла, тогда получим:

$$\beta = (90 + \alpha)/2 = (90 + 14^{0}02^{1})/2 = 52^{\circ}01^{1}$$

 $\sin\beta = 0.788; \cos\beta = 0.62; tg\beta = 1.28.$

Центральный угол гнутой части рамы в градусах и радианах:

$$\begin{split} \varphi &= (90 - \beta)2 = (90 - 52^{0}01) \cdot 2 = 37^{0}59 \cdot 2 = 75^{0}58^{1} \\ \text{или} \quad \varphi &= 90 - \alpha = 90^{0} - 14^{0}02 = 75^{0}58^{1} \\ \varphi_{\text{рад}} &= \pi \varphi / 180^{0} = 3.14 \cdot 75^{0}58^{1} / 180^{0} = 1.33 \\ \varphi_{1} &= \frac{\varphi}{2} = 37^{0}59^{1}; \sin \varphi_{1} = 0.615; \cos \varphi_{1} = 0.788, \operatorname{tg} \varphi_{1} = 0.78 \end{split}$$

Длина гнутой части $I_{rH} = r\phi_{pag} = 3.1,33 = 3,99 \text{ м}.$

Длина стойки от опоры до начала гнутой части

$$I_{CT} = f - \frac{1}{2} \cdot tg\alpha - r \cdot cos\alpha + r(1 - sin\alpha) \cdot tg\alpha = r$$

=
$$6.95 - 11.8 \cdot 0.25 - 3 \cdot 0.97 + 3 \cdot (1 - 0.24) \cdot 0.25 = 1.66 \text{ M}.$$

Длину стойки можно определить иначе (если известно f)

$$I_{ct} = f - \frac{l}{2} \cdot tg \alpha - r \cdot tg \varphi_1 = 6.95 - 11.8 \cdot 0.25 - 3 \cdot 0.78 = 1,66 \text{m},$$

Длина полуригеля:

$$I_{DMF} = (1/2 - r + r \cdot \sin \alpha)/\cos \alpha = (11.8 - 3 + 3 \cdot 0.24)/0.97 = 9.8 \text{ M}.$$

Длина полурамы:

$$I_{np} = I_{c\tau} + I_{rH} + I_{pur} = 1,66 + 3,99 + 9,8 = 15,45$$
M.

Нагрузки.

Нагрузки от покрытия (постоянная нагрузка) - принимаем по предварительно выполненным расчетам ограждающих конструкций.

$$q^{H} = 0.4 \text{ kH/cm}^{2}; \quad q = 0.5 \text{ kH/m}^{2}$$

Собственный вес рамы определяем при к_{св}=6 из выражения

$$q_{_{\text{CB}}} = \frac{q^{^{\text{H}}} + S^{^{\text{H}}}}{\frac{1000}{\kappa_{_{\text{CB}}} \cdot I} - 1} = \frac{0.4 + 0.84}{\frac{1000}{6 \cdot 23.6} - 1} = 0.20 \text{ } \kappa H/\text{M}^2$$

где S^{*} - нормативная снеговая нагрузка для г. Белгорода, которая определяется как произведение расчетной нагрузки по СНиП 2.01.07-85* для II снегового района S=1.2 кH/м² на коэффициент, равный 0.7; $S^* = 1.2 \cdot 0.7 = 0.84 \kappa H/M^2$; I -расчетный пролет, \mathbf{k}_{cB} -коэффициент собственного веса рамы табл.7.3 [3].

В табл. 1.1 представлены значения погонных нагрузок, действующих на раму (при шаге рам 3м).

Табл.1.1

Вид нагрузки	Нормативное	Коэффициент	Расчетное
	значение	надежности	значение
	нагрузки кН/м	по нагрузке	нагрузки
			кН/м
Собственный вес покрытия	0,4x3/cosα=		0,5x3/cosα=
	=1,2/0,97=1,24		=1,5/0,97=
			1,55
Собственный вес рамы	0,2x3=0,6	1,1	0,66
Итого:	1,84		2,22
Снеговая нагрузка	0,84x3=2,52		1,2x3=3,6
Всего:	1,84+2,52=4,36		2,22+3,6=5,81

Статический расчет рамы.

Максимальные усилия в гнутой части рамы возникают при действии равномерно распределенной нагрузки g=5,81кH/м по пролету (см. таблицу сбора нагрузок). Опорные реакции:

вертикальные:
$$A=B=\frac{q \cdot l}{2}=\frac{5,81 \cdot 23,6}{2}=68,56 \text{ кH}$$
;

горизонтальные (распор):
$$H = \frac{q \cdot l^2}{8 \cdot f} = \frac{5.81 \cdot 23.6^2}{8 \cdot 6.95} = 58.2 \text{кH}$$
.

Максимальный изгибающий момент в раме возникает в центральном сечении гнутой части. Координаты этой точки можно определить из следующих соотношений:

$$x = r(1-\cos\varphi_1) = 3(1-0.78) = 0.636 M$$

 $y = I_{c\tau} + r \cdot \sin\varphi_1 = 1.66 + 3 \cdot 0.615 = 3.505 M$

Определяем M и N в этом сечении;

$$M = A \cdot x - \frac{q \cdot x^{2}}{2} - H \cdot y$$

$$M = 68.56 \cdot 0.636 - \frac{5.81 \cdot 0.636^{2}}{2} - 58.2 \cdot 3.505 = -161.56 \text{ kH} \cdot \text{M}$$

$$N = (A - q \cdot x) \cdot \sin\beta + H \cdot \cos\beta$$

$$N = (68.56 - 5.81 \cdot 0.636) \cdot 0.79 + 58.2 \cdot 0.62 = 87,32 \text{ kH}$$
(1)

Подбор сечения и проверка напряжений

В криволинейном сечении М_{мах}=161,56 кН·м, продольная сила

N=87.32 кН. Расчетное сопротивление сжатию и изгибу для сосны II сорта при ширине b = 14 см (принимаем доски шириной b = 15 см до фрезерования) равно:

$$R_c = \frac{15 \cdot m_b}{V_c} = 15 \cdot 1/0.95 = 15.8 M\Pi a = 1,58 \kappa H/cm^2$$

где 15 МПа - расчетное сопротивление сжатию древесины сосны II сорта по табл.3 [1]

Требуемую высоту сечения h_{тр} можно определить приближенно по величине изгибающего момента, а наличие продольной силы учесть введением коэффициента 0,6.

$$h_{\tau p} = \sqrt{\frac{6M}{(0.6bR_c)}} = \sqrt{6 \cdot 161.56 \cdot 10^{-3}} / (0.6 \cdot 0.14 \cdot 15.8) = 0.87 \text{ M}$$

Принимаем высоту сечения несколько больше требуемой, при этом высота сечения должна состоять из целого числа досок, т.е. принимаем 50 слоев толщиной после строжки δ=19 мм,

тогда $h_{rH}=50.19=950$ мм >870 мм .

Высоту сечения ригеля в коньке рамы принимаем $\geq 0.3 \cdot h_{_{\Gamma H}}$, т.е. из 17 слоев толщиной δ =19мм;

$$h_{K} = 17.19 = 323 \text{MM} > 0.3 h_{CH} = 0.3.950 = 285 \text{MM}.$$

Высоту сечения опоры рамы h_{оп} ≥ 0,4h_{гн.} принимаем

$$h_{on}$$
= 22·19= 418MM > 0.4· h_{rH} = 0,4·950= 380MM.

Геометрические характеристики принятого сечения:

$$\begin{split} &\mathsf{F}_{\mathsf{pac}\mathsf{^{\mathsf{\mathsf{4}}}}} = b \cdot \mathsf{h}_{\mathsf{^{\mathsf{\mathsf{FH}}}}} = 0.14 \cdot 0.95 = 133.0 \cdot 10^{\text{-3}} \, \mathsf{M}^2 \\ &\mathsf{W}_{\mathsf{pac}\mathsf{^{\mathsf{4}}}} = b \cdot \mathsf{h}_{\mathsf{^{\mathsf{\mathsf{FH}}}}}^{2} / 6 = 0.14 \cdot 0.95^{2} / 6 = 21.058 \cdot 10^{\text{-3}} \, \mathsf{M}^3 \\ &\mathsf{J}_{\mathsf{pac}\mathsf{^{\mathsf{4}}}} = b \cdot \mathsf{h}_{\mathsf{^{\mathsf{FH}}}}^{3} / 12 = 0.14 \cdot 0.95^{3} / 12 = 10.0027 \cdot 10^{\text{-3}} \, \mathsf{M}^4 \end{split}$$

Коэффициенты условий работы к расчетным сопротивлениям принимаем [1]:

m_в=1 по табл.5;

$$m_6=0.9-\frac{0.9-0.85}{20}\cdot 15=0,8625$$
 по интерполяции согласно табл.7 [1]; $m_{cn}=1,1$ по табл. 8 [1];

Радиус кривизны в гнутой части по нейтральной оси будет равен:

$$r_0 = r - z = r - \frac{h_{cH}}{12 \cdot r} = 3 - \frac{0.95}{12 \cdot 3} = 2.975 M$$

Отношение
$$\frac{r_0}{\delta_{cr}} = \frac{2.975}{0.019} = 156.58$$
 ,тогда по интерполяции значений

табл.9 [1] находим коэффициент m_{zh}

$$m_{rH}$$
=0.8+ $\frac{0.9-0.8}{50}$ ·6.58 =0,813 (для R_c и R_u) по табл.9 [1].

$$m_{\text{гн}}$$
=0.6+ $\frac{0.7-0.6}{50}$ ·6.58 =0,613 (для R_p) по табл.9 [1].

Проверка напряжений при сжатии с изгибом.

Для криволинейного участка отношение $h_{r_H}/r=0.95/3.0=1/3.2 > 1/7$ Изгибающий момент, действующий в биссектрисном сечении «б-б» (см. рис.1.2) находится на расстоянии от расчетной оси, равном

$$e = (h_{20} - h_{00})/2 = (0.95 - 0.41.8)/2 = 0.266 \text{ M}.$$

Расчетное сопротивление древесины сосны 2 сорта:

сжатию и изгибу:
$$R_c = R_u = 15 \cdot m_B \cdot m_G \cdot m_{c_{JJ}} \cdot m_{r_{H}} / \gamma_n = 15 \cdot m_B \cdot m_G \cdot m_{c_{JJ}} \cdot m_{r_{HJ}} / \gamma_n = 15 \cdot m_B \cdot m_G \cdot m_{c_{JJ}} \cdot m_{r_{HJ}} / \gamma_n = 15 \cdot m_B \cdot m_G \cdot m_{c_{JJ}} \cdot m_{c_$$

$$= 15 \cdot 1 \cdot 0.8625 \cdot 1.1 \cdot 0.813 / 0.95 = 12.18 \text{ M}\Pi a$$

где 15 МПа – расчетное сопротивление сосны II сорта см. табл. 3 СНиП [1];

растяжению:

 $R_p=9 \cdot m_B \cdot m_{rH}/\gamma_n = 9 \cdot 1 \cdot 0,613 \cdot /0,95=5.807 \text{ M}\Pi a$

где 9 МПа- расчетное сопротивление по СНиП [1];

Расчетная длина полурамы L_p =15.45 м, радиус инерции сечения

 $r = 0.289 \times 0.95 = 0.27455$, тогда гибкость $\lambda = L_p/r = 15.45/0.27455 = 56,27$.

Для элементов переменного по высоте сечения коэффициент ϕ следует умножить на коэффициент $K_{\text{жN}}$, принимаемый по табл.1 прил.4[1].

$$K_{KN} = 0.66 + 0.34 \beta = 0.66 + 0.34 \times 0.418 / 0.95 = 0.81,$$

где
$$\beta = \frac{h_{\text{on}}}{h_{\text{rH}}} = 0.418 / 0.95$$
 $\phi = \frac{3000}{\lambda^2} = \frac{3000}{56.27^2} = 0.9475$, если

произведение $\phi \cdot k_{xN} \succ 1$ то принимаем $\phi \cdot k_{xN} = 1$, в нашем случае имеем

$$\varphi \cdot k_{MN} = 0.9475 \cdot 0.81 = 0.767$$

$$\xi = 1 - \frac{N_0}{\varphi \cdot R_c \cdot F_{\text{pacy.}}} = 1 - \frac{58.2 \cdot 10^{-3}}{0.767 \cdot 12.18 \cdot 133.0 \cdot 10^{-3}} = 0.9532$$

где N₀=H - усилию в ключевом шарнире.

Изгибающий момент по деформированной схеме

$$M_{\pi} = M/\xi = 161.56 / 0.9532 = 169.49 \text{ kH} \cdot \text{M}$$

Для криволинейного участка при отношении h/r=0.95/3.0=1/3.2>1/7 согласно п.6.30 [1] прочность следует проверять для наружной и внутренней кромкам с введением коэффициентов k_{rs} и k_{rh} к W_{pacq} .

$$K_{\Gamma B} = \frac{1 - 0.5 \cdot h_{\Gamma}}{1 - 0.17 \cdot h_{\Gamma}} = \frac{1 - 0.5 \cdot 0.95 / 3.0}{1 - 0.17 \cdot 0.95 / 3.0} = \frac{0.8417}{0.946} = 0.89;$$

$$K_{\Gamma H} = \frac{1 + 0.5 \cdot h/r}{1 + 0.17 \cdot h/r} = \frac{1 + 0.5 \cdot 0.95/3.0}{1 + 0.17 \cdot 0.95/3.0} = \frac{1.158}{1.054} = 1.099$$

Расчетный момент сопротивления с учетом влияния кривизны:

$$W_{\text{B}} = W_{\text{pacy}} \kappa_{\text{rB}} = 21.058 \cdot 10^{-3} \cdot 0.89 = 18.742 \cdot 10^{-3} \,\text{m}^3$$

$$W_{\text{H}} = W_{\text{pacy}} \kappa_{\text{rH}} = 21.058 \cdot 10^{-3} \cdot 1.099 = 23.143 \cdot 10^{-3} \,\text{m}^3$$

Напряжение по сжатой внутренней кромке:

$$\sigma_{c} = N_{F} + M_{A} / M_{B} = \leq R_{c}$$
 (2)

$$\sigma_c = \frac{87.32 \cdot 10^{-3}}{133 \cdot 10^{-3}} + \frac{169.49 \cdot 10^{-3}}{18.742 \cdot 10^{-3}} = 9.7 \text{ M}\Pi a \leq R_c = 12.18 \text{ M}\Pi a$$

Напряжение по растянутой наружной кромке:

$$\sigma_{p} = -N_{F} + M_{A} / W_{H} \leq R_{p}$$
 (3)

$$\sigma_p = -\; rac{87.32 \cdot 10^{-3}}{133 \cdot 10^{-3}} + rac{169.49 \cdot 10^{-3}}{23.143 \cdot 10^{-3}} = 6.67 \; {\it MПа} \succ {\rm R}_p = 5.807 \; {\rm м} \Pi {\rm a}$$

Это означает, что условие прочности по растяжению не удовлетворяется. Необходимо увеличить высоту сечения и проивести проверку по формуле (3).

Добавим еще 4 слоя по 1.9 см, тогда высота гнутой части:

$$h_{rH} = 0.95 + 4.0.019 = 1.026 \,\text{M}.$$

$$F = 1.026 \cdot 0.14 = 143.64 \cdot 10^{-3} \text{ m}^2$$

$$W_{pac4} = b \cdot h_{rH}^2 / 6 = 0.14 \cdot 1.026^2 / 6 = 24.5624 \cdot 10^{-3} \,\text{m}^3$$

$$k_{rH} = \frac{1 + 0.5 \cdot \frac{1.026}{3.0}}{1 + 0.17 \cdot \frac{1.026}{3.0}} = 1.171$$

$$\sigma_{p} = -\frac{87.32 \cdot 10^{-3}}{143.64 \cdot 10^{-3}} + \frac{169.49 \cdot 10^{-3}}{24.5624 \cdot 10^{-3} \cdot 1,171} = 5.29 \text{ мпа} \prec R_{p} = 5.807 \,\text{м}\Pi a$$

Недонапряжение по одной из проверок должно быть меньше 5%.

В нашем случае недонапряжение составляет:

$$\left| \frac{5.29 - 5.807}{5.807} \cdot 100\% \right| = 3\% \le 5\%$$

Условие прочности выполняется.

Окончательно принимаем сечения рамы:

$$h_{eh} = 102.6cM$$
 $h_{\kappa} = 38cM$ $h_{on} = 47.5cM$.

Где
$$h_{\scriptscriptstyle A} = 20 \cdot 1.9 = 38 c_{\scriptscriptstyle M} \succ 0.3 \cdot 102.6 = 30.78 c_{\scriptscriptstyle M}$$

$$h_{on} = 25 \cdot 1.9 = 47.5$$
cm $\succ 0.4 \cdot 102.6 = 42.24$ cm

Проверка устойчивости плоской формы деформирования рамы.

Рама закреплена из плоскости:

- в покрытии по наружной кромке прогонами (или плитами) по ригелю,

- по наружной кромке стойки стеновыми панелями. Внутренняя кромка рамы не закреплена. Эпюра моментов в раме имеет следующий вид.

Точку перегиба моментов, т.е. координаты точки с нулевым моментом находим из уравнения моментов (1), приравнивая его нулю:

$$M = A \cdot x - \frac{q \cdot x^{2}}{2} - H \cdot (f - tg\alpha \cdot (\frac{1}{2} - x)) = 0;$$

$$68.56 \cdot x - \frac{5.81 \cdot x^{2}}{2} - 58.2 \cdot (6.95 - 0.25 \cdot (\frac{23.6}{2} - x)) = 0$$

 $2.905x^2$ - 54.01x + 232.72=0, получаем уравнение вида $ax^2 + bx + c = 0$

$$x_{1,2} = \frac{-B \pm \sqrt{B^2 - 4ac}}{2a}$$
, решая уравнение, получим $x_1 = 11.807$; $x_2 = 6.785$ принимаем $x_2 = 6.785$ м, тогда

$$y = f - tga(1/2 - x) = 6.95 - 0.25 \cdot (23.6/2 - 6.785) = 5.7 \text{M}$$

Точка перегиба эпюры моментов соответствует координатам x=6.785м от оси опоры, y= 5.7м.

Тогда расчетная длина растянутой зоны, имеющей закрепления по наружной кромке равна:

$$I_{p1} = I_{CT} + I_{FH} + I_p - \frac{1/2 - x}{\cos \alpha} = 1,66 + 3,99 + 9,8 - \frac{11,8 - 6,785}{0,97} = 10,28M$$

Расчетная длина сжатой зоны, наружной (раскреплённой) кромки ригеля (т.е. закреплений по растянутой кромке нет) равна:

$$I_{p2} = \frac{1/2 - x}{\cos \alpha} = \frac{11.8 - 6.785}{0.97} = 5.17 \text{M}$$

Таким образом, проверку устойчивости плоской формы деформирования производим для 2-х участков.

Проверка устойчивости производится по формуле (33) п.6.29 [1].

$$\frac{N}{\varphi_{v}R_{c}F} + \left(\frac{M_{\mu}}{\varphi_{M}WR_{u}}\right)^{n} \le 1 \tag{4}$$

1. Для сжатого участка $I_{p2} = 5.17$ м находим максимальную высоту сечения из соотношения:

$$h' = h_{K} + \frac{(h_{\Gamma H} - h_{K}) \cdot I_{p2}}{I_{p}} = 0.38 + \frac{(1.026 - 0.38) \cdot 5.17}{9.80} = 0.72 \text{ cm}$$

$$\lambda_{y} = \frac{I_{p2}}{0.289 \cdot b} = \frac{5.17}{0.289 \cdot 0.14} = 127.8$$

$$\phi_y = \frac{3000}{\lambda_y^2} = \frac{3000}{127.8^2} = 0.184$$
,

$$\varphi_{M} = 140 \cdot \frac{b^{2}}{I_{p2} \cdot h^{1}} \cdot k_{\phi} = 140 \cdot \frac{0.14^{2}}{5.17 \cdot 0.72} \cdot 1.13 = 0.833$$

где K_{Φ} см. табл. 2 Прил. 4. СНиП [1],

$$F_2 = 0.72 \cdot 0.14 = 100.8 \cdot 10^{-3} \text{M}^2; \quad W_2 = \frac{0.14 \cdot 0.72^2}{6} = 12.096 \cdot 10^{-3} \text{M}^3$$

Показатель степени n=2, т.к. на данном участке нет закреплений растянутой зоны.

Находим максимальный момент и соответствующую продольную силу на расчетной длине 5.17м., при этом горизонтальная проекция этой длины будет равна $I_{p2}^1 = I_{p2} \cdot cos\alpha = 5.17 \cdot 0.97 = 5.015$ м

Максимальный момент будет в сечении с координатами: x₁ и y₁,

$$\boldsymbol{x}_1 = \frac{1}{2} - \frac{11_{p2}}{2} = \frac{23.6 - 5.015}{2} = 9.292 \; \text{M} \,,$$

$$y_1 = y + \frac{I_{p2}}{2} \cdot \sin \alpha = 5.7 + \frac{5.17}{2} \cdot 0.24 = 6.3 M$$

$$\begin{split} &M_{x1}\!=\!A\cdot x_1\!-\!\frac{q\cdot x_1^2}{2}\!-\!H\cdot y_1\!=\!68.56\cdot 9.292-\frac{5.81\cdot 9.292^2}{2}\!-\!58.2\cdot 6.3=\!19.58\,\kappa H\cdot M \\ &N_{x1}\!=\!\left(\!A-q\cdot x\right)\!\!\sin\!\beta + H\cdot \cos\!\beta =\!\left(\!68,\!56-5,\!81\cdot 9.292\right)\!\cdot 0.788+58.2\cdot 0.62=\!47.57\kappa H \end{split}$$

Момент по деформируемой схеме
$$M_{\text{д}} = \frac{M_{\text{x1}}}{\xi}; \; \xi = 1 - \frac{N}{\phi_{\text{x1}} \cdot F^{'} \cdot R_{c}},$$

тогда
$$\lambda_{x1} = \frac{I_{p2}}{0.289 \cdot h'} = \frac{517}{0.289 \cdot 0.72} = 24.85$$
 $\varphi_{x1} = \frac{3000}{\lambda_{x1}^2} \cdot = \frac{3000}{24 \cdot 85} = 4,86$ так

как
$$\varphi_{\text{x1}} \cdot k_{\text{xN}} = 4.86 \cdot 0.839 = 4.08 \succ 1$$
, принимаем $\phi_{\text{x1}} \cdot k_{\text{xN}} = 1$,

где
$$k_{\text{жN}} = 0.66 + 0.34 \, \beta = 0.66 + 0.34 \cdot \frac{h_{K}}{h_{L}} = 0.66 + 0.34 \cdot \frac{0.38}{0.72} = 0.839$$

(по табл.1 Приложения 4 СНиП [1])

Коэффициент m_6 для $h^{'}$ =72 см по табл. 7 [1]

$$m_{\tilde{0}} = 0.93 - \frac{0.93 - 0.9}{10} \cdot 2 = 0.924$$
, тогда

$$R_c = 15 \cdot 1 \cdot 0.924 \cdot 1/0.95 = 14.59 \text{ M}\Pi a$$

подставим
$$\xi = 1 - \frac{58.2 \cdot 10^{-3}}{1 \cdot 100.8 \cdot 10^{-3} \cdot 14.59} = 0.96$$
, $M_{_{\rm J}} = \frac{19.58}{0.96} = 20,4 \ {\rm KH} \cdot {\rm M}$

При расчёте элементов переменного по высоте сечения, не имеющих закреплений из плоскости по растянутой кромке или при числе закреплений $m \prec 4$, коэффициенты φ_y и φ_M - следует дополнительно умножать соответственно на коэффициенты k_{seN} и k_{seN} в плоскости уz (по табл.1 и 2 Приложения 4 СНиП [1])

$$k_{_{MN}} = 0.07 + 0.93\beta = 0.07 + 0.93 \cdot \frac{h_{_{K}}}{h^{1}} = 0.07 + 0.93 \cdot \frac{0.38}{0.72} = 0.56$$

$$\kappa_{_{\text{KM}}} = \beta^{\frac{1}{2}} = (\frac{h_{_K}}{h^1})^{\frac{1}{2}} = \sqrt{\frac{0.38}{0.72}} = 0.73$$

Тогда
$$\varphi_y \cdot k_{xN} = 0.184 \cdot 0.56 = 0.103$$

$$\varphi_{M} \cdot k_{xM} = 0.833 \cdot 0.73 = 0.608$$

Подставим значения в формулу (4) и получим:

$$\frac{47.57 \cdot 10^{-3}}{0.103 \cdot 100.8 \cdot 10^{-3} \cdot 14.59} + \left(\frac{20.4 \cdot 10^{-3}}{0.608 \cdot 12.096 \cdot 10^{-3} \cdot 14.59}\right)^2 = 0.314 \le 1$$

2. Производим проверку устойчивости плоской формы деформирования растянутой зоны на расчетной длине I = 10,28 м где имеются закрепления растянутой зоны.

Гибкость $\lambda = 1028/(0,289b) = 1028/(0,289 \cdot 14) = 254$; коэффициент

$$\phi_y = \frac{3000}{\lambda_y^2} \cdot = \frac{3000}{254^2} = 0.047$$

$$\varphi_{M} = 140 \cdot \frac{b^{2}}{I_{p1} \cdot h_{TH}} \cdot k_{\phi} = 140 \cdot \frac{0.14^{2}}{10.28 \cdot 1.026} \cdot 1.13 = 0.294$$

Где $h_{\it en}$ =1.026 м - максимальная высота сечения на расчётной длине $I_{\it p}$:=10.28м,

$$\kappa_{\phi}$$
=1.13 по табл.2 прил. 4 [1]

При закреплении растянутой кромки рамы из плоскости, коэффициент ϕ_y необходимо умножить на коэффициент $k_{\Pi N}$ (формула 34 СНиП [1]), а ϕ_M - на коэффициент $k_{\Pi M}$ (по формуле 24 СНиП [1])

Поскольку верхняя кромка рамы раскреплена прогонами (плитами покрытия шириной 1,5м или 1.2м) и число закреплений $m \ge 4$, величину $\frac{m^2}{m^2+1}$ следует принимать равной 1, тогда:

$$\begin{split} \kappa_{\Pi N} = & 1 + \left[0.75 + 0.06 \cdot \left(\frac{l_{p1}}{h} \right)^2 + 0.6 \cdot \alpha_p \cdot \frac{l_{p1}}{h} - 1 \right) \cdot \frac{m^2}{m^2 + 1} = \\ = & 1 + \left[0.75 + 0.06 \cdot \left(\frac{10.28}{1.026} \right)^2 + 0.6 \cdot 1.33 \cdot \frac{10.28}{1.026} - 1 \right) = 14.77 \\ \kappa_{\Pi M} = & 1 + \left[0.142 \cdot \frac{l_{p1}}{h} + 1.76 \cdot \frac{h}{l_{p1}} + 1.4 \cdot \alpha_p - 1 \right) \cdot \frac{m^2}{m^2 + 1} = \\ = & 1 + \left[0.142 \cdot \frac{10.28}{1.026} + 1.76 \cdot \frac{1.026}{10.28} + 1.4 \cdot 1.33 - 1 \right) = 3.46 \\ \varphi_y \cdot \kappa_{\Pi N} = & 0.047 \cdot 14.77 = 0.694 \prec 1 \\ \varphi_M \cdot \kappa_{\Pi M} = & 0.294 \cdot 3.46 = 1.017 \end{split}$$

Подставляем полученные значения в формулу проверки устойчивости плоской формы деформирования (4):

$$\frac{87.32 \cdot 10^{-3}}{0.694 \cdot 143.64 \cdot 10^{-3} \cdot 12.18} + \frac{169.49 \cdot 10^{-3}}{1.017 \cdot 24.562 \cdot 10^{-3} \cdot 12.18} = 0.63 < 1$$

т.е. общая устойчивость плоской формы деформирования полурамы обеспечена с учетом наличия закреплений по наружному контуру. Если устойчивость плоской формы деформирования не будет обеспечена (уравнение >1), необходимо поставить вертикальные связи (распорки) между рамами, соединив их попарно, по длине здания. При этом расчетная 14

длина уменьшиться вдвое, т.е. $I_{p1} = 10,28 \text{м/2} = 5.14 \text{м}$.

Конструкция и расчет узлов.

Опорный узел (рис.1.3).

$$\begin{split} &N_0\text{=}A\text{=}68.56\text{кH}; \quad Q_0\text{=}H\text{=}58.2\text{кH}; \quad \text{Fon}\text{=}0.14\cdot0.475\text{=}66.58^*10^{-3} \quad \text{M}^2 \; ; \\ &\sigma_{\text{\tiny CM}}=\text{N/F}_{\text{\tiny On}}=68,\!56\cdot10^{-3}/\!66.58\cdot10^{-3}=1.03\text{M}.0 \quad \prec R_{\text{\tiny CM}}=\frac{15}{0.95}=15.8 \, \text{M}\Pi \text{a} \end{split}$$

где $R_{\text{см}}$ =15 МПа - расчетное сопротивление смятию (сжатию) вдоль волокон табл.3 СНиП [1].

Требуемая высота диафрагмы (из расчёта на смятие рамы поперёк волокон от действия распора):

$$h_{mp} = \frac{H}{bR_{CM90}} = \frac{58.2 \cdot 10^{-3}}{0.14 \cdot 3.16} = 0.132$$
м где $R_{cM90} = 3/0,95 = 3.16$ м Πa

b - ширина сечения рамы, H – распор.

Конструктивно принимаем высоту диафрагмы h= 20см.

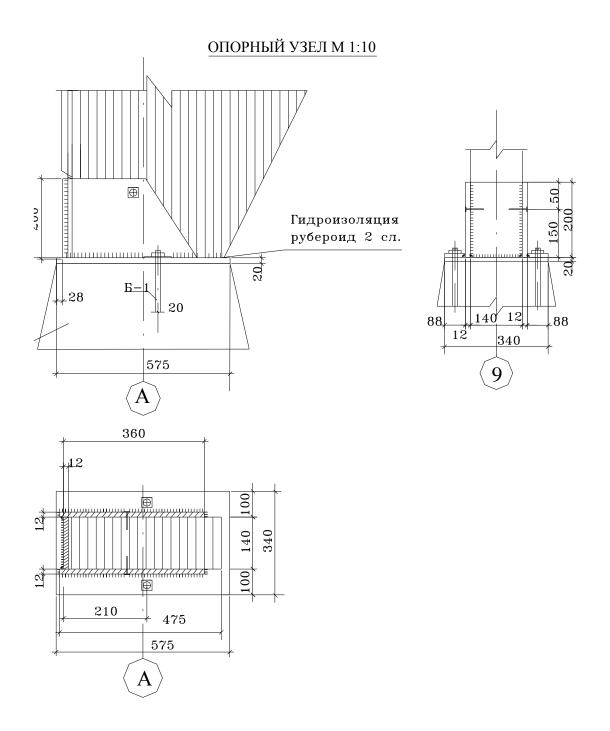


Рис.1.3. Опорный узел рамы.

Рассчитываем опорную вертикальную диафрагму, воспринимающую распор, на изгиб как балку, частично защемленную на опорах, с учетом пластического перераспределения моментов:

$$M = \frac{H \cdot b}{16} = \frac{58.2 \cdot 14}{16} = 50.93 \text{ kH} \cdot \text{cm}$$

Требуемый момент сопротивление вертикальной диафрагмы:

$$W_{\tau p} = \frac{M \cdot \gamma_{\pi}}{R_{\nu} \cdot \gamma_{c}} = \frac{50.93 \cdot 0.95}{21 \cdot 0.9} = 2.56 \text{cm}^{3} \,,$$

где $R_y = 210 M \Pi a = 21 \frac{\text{KH}}{\text{cm}^2}$ -расчетное сопротивление стали по пределу текучести. Этому моменту сопротивления должен быть равен момент сопротивления, определенный по формуле:

$$W = \frac{h \cdot \delta^2}{6} = 20 \cdot \delta^2 / 6$$

где δ - толщина диафрагмы.

Тогда
$$\delta = \sqrt{\frac{6 \cdot W_{\tau p}}{h}} = \sqrt{\frac{6 \cdot 2,56}{20}} = 0,88$$
см

Принимаем $\delta = 1.2$ см

Боковые пластины и опорную плиту принимаем той же толщины в запас прочности.

Предварительно принимаем следющие размеры опорной плиты:

длина опорной плиты принимается $I_{nn}=h_{on}+2.5$, ширина, $b_{nn}=b+2.10$ включая зазор «с» между боковыми пластинами и рамой по 0.5см.

Длинна $I_{пл}$ =575 мм, ширина $b_{пл}$ =340 мм (рис. 1. 3):

Для крепления башмака к фундаменту принимаем анкерные болты диаметром 20 мм, имеющие следующие геометрические характеристики:

$$F_{6p} = 3.14 \text{cm}^2; F_{HT} = 2.45 \text{cm}^2$$

Анкерные болты работают на срез от действия распора.

- срезывающее усилие:

$$N_{cp} = \frac{H}{2} = \frac{58.2}{2} = 29.1 \, \text{kH}$$

Напряжение среза определим по формуле:

$$\tau = \frac{N_{cp}}{F_{6p}} = \frac{29.1}{3.14} = 9.3 \text{ KH/}_{CM^2} \le \frac{R_c}{\gamma_n} = \frac{15 \cdot 0.85}{0.95} = 13.4 \text{ KH/}_{CM^2};$$

где R_c - расчётное сопротивление срезу стали класса С235, равное в соответствии с таб. 1 * СНиП II-23-81 0.85 R_v .

Условие прочности анкерных болтов выполняется.

Коньковый узел

Максимальная поперечная сила в коньковом узле возникает при несимметричной временной снеговой равномерно-распределённой нагрузке на половине пролёта, которая воспринимается парными накладками на болтах. Размеры и расчетная схема накладок приведены на рис.1.4

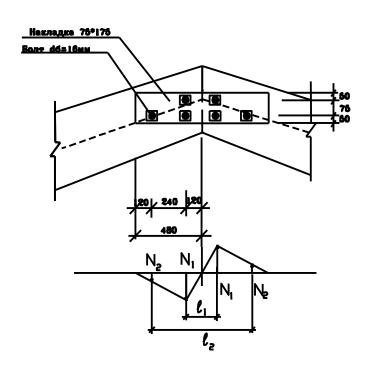


Рис 1.4. Коньковый узел.

Поперечная сила в коньковом узле при несимметричной снеговой нагрузке

$$Q = \frac{S \cdot I}{8} = \frac{3.6 \cdot 23.6}{8} = 10,62 \text{KH}.$$

где S= 3.6 кH/м - снеговая нагрузка (см. таб. 1.1),

Определяем усилия, действующие на болты, присоединяющие накладки к поясу.

$$R_1 = \frac{Q}{1 - \frac{l_1}{l_2}} = \frac{10,62}{1 - \frac{1}{3}} = 15,93 \text{ kH}$$

$$R_2 = \frac{Q}{I_2/I_1} = \frac{10,62}{3/1-1} = 5,31 \text{ kH}$$

где I₁- расстояние между первым рядом болтов в узле;

l₂-расстояние между вторым рядом болтов.

По правилам расстановки нагелей отношение между этими расстояниями может быть $\frac{I_1}{I_2} = \frac{1}{2}$ или $\frac{I_1}{I_2} = \frac{1}{3}$. Мы приняли отношение 1/3 , чтобы получить меньшие значения усилий.

Принимаем диаметр болтов 16 мм и толщину накладок 75 мм (толщина накладки примерно должна быть равна половине ширины рамы).

Несущая способность на один рабочий шов при направлении передаваемого усилия под углом 90° к волокнам согласно табл. 17,19 [1] находим из условий:

Изгиба болта:

$$T_{\mu} = (1.8d^2 + 0.02a^2)\sqrt{k_{\alpha}} = (1.8 \cdot 1.6^2 + 0.02 \cdot 7.5^2)\sqrt{0.6} = 4.44\kappa H$$

Но не более значения $T_{_{\text{И}}}=2,5\text{d}^2\cdot\sqrt{k_{_{\text{C}}}}=2,5\cdot1,6^2\cdot\sqrt{0,6}=4,96\,\text{кH}$

где а-толщина накладки (см.); d- диаметр болтов (см), k_α- коэффициент зависящий от диаметра болтов и величины угола между направлением усилия и волокнами древесины накладки по табл.19 [1].

Смятия крайних элементов-накладок при угле смятия 90°:

$$T_{cM} = 0.8 \cdot a \cdot d \cdot k_{\alpha} = 0.8 \cdot 7.5 \cdot 1.6 \cdot 0.6 = 5.76 \kappa H$$
.

Смятие среднего элемента– рамы при угле смятия α =90°-14°02=75°58:

$$T_{\text{CM}} = 0.5 \cdot c \cdot d \cdot k_{\alpha} = 0.5 \cdot 14 \cdot 1.6 \cdot 0.647 = 7.25 \text{ kH},$$

где с - ширина среднего элемента — рамы равная b (см), k_{α} - коэффициент зависящий от диаметра болтов и величины угла между направлением усилия и волокнами древесины рамы по табл.19 [1].

Минимальная несущая способность одного болта на один рабочий шов: $T_{min} = 4,44 \ \text{кH, тогда}$

Необходимое количество болтов в ближайшем к узлу ряду:

$$n_6 = \frac{R_1}{n_{\text{III}} \cdot T_{\text{min}}} = \frac{15,93}{2 \cdot 4,44} = 1,8$$
 ,принимаем 2 болта.

Количество болтов в дальнем от узла ряду:

$$n_0^1 = \frac{R_2}{n_{\text{min}} \cdot T_{\text{min}}} = \frac{5.31}{2 \cdot 4.44} = 0.6$$
, принимаем 1 болт.

Принимаем расстояние между болтами по правилам расстановки СНиП $I_1 \ge 2 \cdot 7 \cdot d = 22,4 \text{ см}, \quad \text{принимаем} \quad 24 \quad \text{см}, \quad \text{тогда} \quad \text{расстояние}$ $I_2 = 3 \cdot I_1 = 3 \cdot 24 = 72 \text{ см}.$

Ширину накладки принимаем ≥ 10 d, что равно 160 мм, согласно сортамента по ГОСТ 24454-80*(3) принимаем ширину накладки 175 мм, тогда расстояние от края накладки до болтов $S_2 \ge 3d = 3 \cdot 1,6 = 4,8$ см ≈ 5 см, расстояние между болтами $S_3 \ge 3,5d = 3,5 \cdot 1,6 = 5,6$ см. принимаем 7.5см, что больше чем 5.6 см.

Изгибающий момент в накладках согласно схеме (рис.1.4):

$$M_{H} = \frac{Q \cdot I_{1}}{2} = \frac{10,62 \cdot 24}{2} = 127,44 \text{ kH} \cdot \text{cm}$$

Момент инерции накладки, ослабленной двумя отверстиями диаметром 1,6 см:

$$\begin{split} &J_{\text{H}} = \frac{\delta_{\text{H}} \cdot b_{\text{H}}^3}{12} - 2 \frac{\delta_{\text{H}} \cdot d^3}{12} - 2 \cdot \delta_{\text{H}} \cdot d \cdot \left(\frac{S_3}{2}\right)^2 = \\ &= \frac{7.5 \cdot 17.5^3}{12} - 2 \cdot \frac{7.5 \cdot 1.6^3}{12} - 2 \cdot 7.5 \cdot 1.6 \cdot \left(\frac{7.5}{2}\right)^2 = 3006.99 \text{cm}^3 \end{split}$$

где S₃ - расстояние между болтами.

Момент сопротивление накладки
$$W_{H} = \frac{J_{H}}{b_{H}/2} = \frac{3006.99}{17.5/2} = 353.76$$
см³

Напряжение в накладках:

где 2-количество накладок;

 $R_u = 13 M\Pi a$ — расчетное сопротивление древесины изгибу по табл. 3 [1].

ПРИМЕР 2. РАМА С СОЕДИНЕНИЕМ РИГЕЛЯ И СТОЙКИ НА ЗУБЧАТЫЙ ШИП.

<u>Задание:</u> запроектировать каркас отапливаемого здания с рамами из прямолинейных элементов с зубчатым клеевым соединением ригеля и стойки в карнизном узле.

Исходные данные:

Ширина здания L=18м, шаг рам B= 3м, высота рамы в коньке

 $f^{_1}$ =6.7 м, кровля из металлочерепицы по прогонам. Кровля теплая с уклоном i=0,3, $tg\alpha=0.3$, $\alpha^{_1}=16.7^{_0}$. Район строительства — г. Москва.

Степень ответственности здания II класс прил.7^{*} [2]. Рама клеёная из древесины сосны или ели 2 сорта. Склеивание дощатых слоев толщиной 33мм (после фрезерования досок толщиной 40 мм) производится клеем ФРФ-50к.

Геометрические размеры рамы.

Внешние габариты рамы и ее геометрические размеры (предварительные) показаны на рис 2.1.

Высота рамы в карнизе по внешнему габариту $H = f^1 - y_1 = f^1 - \frac{L}{2} tg\alpha$;

$$H = 6.7 - \frac{18}{2} \cdot 0.3 = 6.7 - 2.7 = 4 \text{ м., где } y_1 = \frac{18}{2} \cdot 0.3 = 2.7 \text{м}$$

Расчетный пролет рамы $I_p = 17,6 \text{м}$. Поперечное сечение стоек и ригелей – прямоугольное с постоянной шириной в=140мм, полученной после фрезеровки досок шириной 150мм (ГОСТ 24454-80*) и переменной высотой.

Соединение ригеля и стойки в карнизном узле выполняются с помощью зубчатого клеевого шипа по всему сечению.

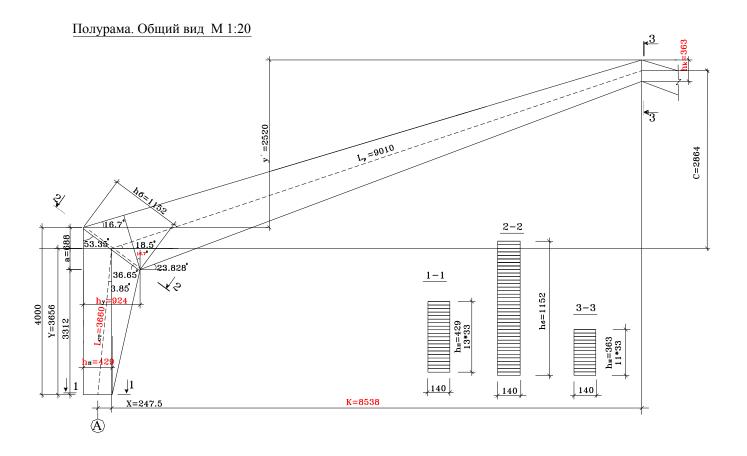


Рис.2.1.Общий вид рамы.

Ригель и стойка изготовляются путем распиловки прямоугольных пакетов, склеенных из сосновых досок толщиной 33мм (после фрезерования досок толщиной 40 мм).

Предварительно принимаем сечение в карнизном узле из 28 слоев по 33мм, т.е. h_y =28·33=924мм, что составляет около I/19 и соответствует общепринятым допускаемым пределам $h_y / l = 1/12... 1/24$ [1]

В пяте стойки рамы принимаем высоту сечения $h_{\pi} \geq 0.4\ h_y$, а в коньке $h_{\kappa} {\geq} 0.4\ h_y$, [5]

Принимаем
$$h_{\Pi}$$
= 13·33 = 429 мм > 0,4 h_{y} = 0.4·924 = 369.6 мм.
$$h_{K}$$
= 11·33 = 363 мм > 0,3 h_{y} = 0,3·924 = 277.2 мм [6],

Высота биссектрисного сечения рамы

$$h_6 = \frac{h_y}{\cos \alpha_1} = \frac{h_y}{\cos 36,65^0} = \frac{92.4}{0,802} = 115.2cm = 1.152m$$
,

где
$$\alpha_1 = 90^0 - \phi$$
; $\phi = \frac{90^0 + \alpha^1}{2} = \frac{90^0 + 16.7^0}{2} = 53.35^0$;

$$\alpha_1 = 90^{\circ} - 53.35^{\circ} = 36.65^{\circ}$$
.

Определяем остальные размеры рамы.

Обозначим высоту между внешним и внутренним биссектрисным сечением буквой «а», тогда это расстояние будет равно:

$$a = \sqrt{h_0^2 - h_y^2} \; ; \; \; a = \sqrt{1.152^2 - 0.924^2} \; = 0.688 \text{M}$$

Обозначим расстояние по высоте между внешней точкой карнизного узла и серединой конькового узла у¹, тогда

$$y^1 = y_1 - \frac{h_K}{2} = 2.7 - 0.363/2 = 2.52M$$

Если обозначить расстояние по высоте между серединами карнизного и конькового узлов через букву «с», будем иметь:

$$c = y^1 + \frac{a}{2} = 2.52 + \frac{0.688}{2} = 2.864 \text{M}$$

Для расчета рамы нам необходимо определить координаты середины биссектрисного сечения у и х, которые равны:

$$x = \frac{h_y - h_n}{2} = \frac{0.924 - 0.429}{2} = 0.2475 \text{m} \; , \; \; y = H - \frac{a}{2} = 4 - \frac{0.688}{2} = 3.656 \text{m} \; ,$$

тогда длина стойки по осевой линии

$$I_{c\tau} = \sqrt{y^2 + x^2} = \sqrt{3.656^2 + 0.2475^2} = 3.66 \text{ m}$$

длина ригеля по осевой линии $I_{\text{риг}} = \sqrt{c^2 + \kappa^2} = \sqrt{2.864^2 + 8.538^2} = 9.01\,\text{м}$

24 где
$$\kappa = \frac{L}{2} - x - \frac{h_n}{2} = \frac{18}{2} - 0.2475 - \frac{0.429}{2} = 8.538 \text{м}.$$

Угол наклона осевой линии ригеля к горизонтали $\gamma = 18^0 30^1$ из

соотношения
$$tg\gamma = \frac{c}{\kappa} = \frac{2.864}{8.538} = 0.335$$

Стрела подъема рамы расчетного сечения (по осевой линии)

$$f = f^1 - \frac{h_k}{2} = 6.7 - \frac{0.363}{2} = 6.52 \,\text{M}$$

Расчетный пролет рамы:
$$I_p = \frac{L_2}{2} - \frac{h_n}{2} = \frac{18}{2} - \frac{0.429}{2} = 8.8 \text{м}$$

С учетом предварительно принятых размеров элементов рам получим геометрическую схему, приведенную на рис.2.2.



Рис.2.2. Геометрическая схема рамы.

Определение нагрузок на раму.

Раму рассчитываем от собственного веса рамы, покрытия с кровлей и снега (по всему пролету).

Нагрузку от покрытия (постоянные нагрузки из предварительного расчета ограждающих конструкций) принимаем:

Нормативную $q^H = 0.4 \text{ кH/m}^2$, расчетную $q = 0.5 \text{ кH/m}^2$

Собственный вес рамы при к_{с.в.}=7(см.табл.7.3 [3] из выражения: 25

$$q_{c.b.}^{H} = \frac{q^{H} + S^{H}}{\frac{1000}{k_{c.b.} \cdot l_{p}}} = \frac{0.418 + 1.26}{\frac{1000}{7 \cdot 17.6} - 1} = 0.23 \text{ KH/ } \text{M}^{2}$$

где S^{H} - нормативная снеговая нагрузка для г. Москва, которая определяется как произведение расчетной нагрузки по СНиП $2.01.07-85^{*}$ для III снегового района S=1.8 кН/м 2 на коэффициент, равный 0.7

$$S^{H} = 1.8 \cdot 0.7 = 1.26 \kappa H / M^{2}$$
.

I_" – расчетный полет.

К_{с.в.} – коэффициент собственного веса рамы.

При уклоне i=0,3 (tg α^1 =0.3) α^1 =16,7°; cos α^1 =0.958; sin α^1 =0.287

Нагрузка от покрытия с учетом уклона кровли составит:

$$q^{H} = \frac{0.4}{\cos(\alpha^{1})}$$
 $q = \frac{0.5}{\cos(\alpha^{1})}$

Значения погонных нагрузок, действующих на раму (при шаге рам **3м**) с учетом уклона кровли приведены в таб. 2.1.

Таб 2.1

Вид нагрузки	Нормативное значение нагрузки кН/м	Коэффициент надежности по нагрузке	Расчетное значение нагрузки кН/м
Собственный вес покрытия	0,4x3/cosα= =1,2/0,96=1,253		0,5x3/cosα= =1,2/0,96=1,57
Собственный вес рамы	0,23x3=0,69	1,1	0,78
Итого:	1,94		2,35
Снеговая нагрузка	1,26x3=3,78		1,8x3=5,4
Всего:	5,72		7,75

В соответствии с рекомендациями п.8.12 [5] при высоте стойки рамы 26 Н ≤ 4м расчет рамы на ветровую нагрузку можно не производить.

Статический расчет рамы.

Максимальные усилия возникают в карнизном узле рамы при действии полной расчетной нагрузки (постоянной и временной) по всему пролету рамы: q= 7.75 кH/м.

Опорные реакции:

Вертикальные
$$A=B=\frac{q \cdot l_p}{2}=\frac{7.75 \cdot 17.6}{2}=68.2 \text{ кH}$$

Горизонтальные - (распор)

$$H = \frac{q \cdot l_p^2}{8 \cdot f} = \frac{7.75 \cdot 17.6^2}{8 \cdot 6.52} = 46.0 \text{ kH}$$

На рис.2.3 представлен карнизный узел, в котором определяем расчетые усилия.

Усилия в расчетном сечении 1-1 (X=0.2475м; y=3.656м) по оси биссектрисы карнизного узла (рис 2.3).

Изгибающий момент

$$M_{|-|} = A \cdot x - q \cdot x^2 / 2 - H \cdot y = 68.2 \cdot 0.2475 - 7.75 \cdot 0.2475^2 / 2 - 46.0 \cdot 3.656 = -151.53 \text{ kH} \cdot \text{m}$$

Продольная сила:

$$N_{I-I} = (A - q \cdot x) \sin \varphi + H \cos \varphi$$

где
$$\varphi = \frac{90 + 16.7}{2} = 53.55$$
; $\sin \varphi = 0.802$; $\cos \varphi = 0.597$.

Тогда

$$N_{I-I} = (68.2 - 7.75 \cdot 0.2475) \cdot 0.802 + 46.0 \cdot 0.597 = 80.62 \text{ kH}.$$

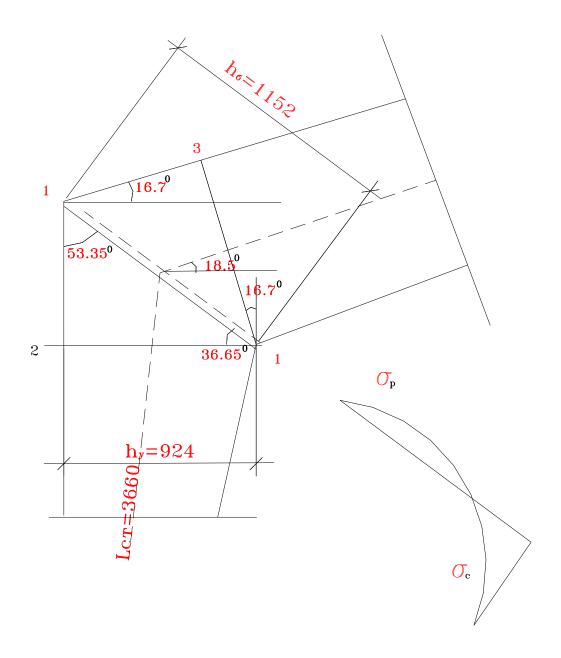


Рис. 2.3

Усилия в сечениях 1-2 и 1-3 карнизного узла (см. рис.2.3):

$$\begin{aligned} M_{l-2} &= M_{l-3} = A \cdot x - q \cdot {x_i}^2 / 2 - H \cdot y_i = 68.2 \cdot 0.2475 - 7.75 \cdot 0.2475^2 / 2 - \\ &- 46.0 \cdot 3.312 = -135.7 \; \kappa H \cdot \text{m} \end{aligned}$$

$$N_{1-2} = A = 68.2 \text{ kH}$$

(Точнее
$$N_{1-2} = A - q \cdot x = 68.2 - 7.75 \cdot 0.2475 = 66.28 \text{ кH}$$
).

$$N_{1-3} = (A - q \cdot x) \cdot \sin 18^{0} 30^{1} + H \cdot \cos 18^{\circ} 30^{1} = (68.2 - 7,75 \cdot 0.2475) \cdot 0.314 + 46.0 \cdot 0.949 = 64.47 \text{ kH}.$$

где
$$y_i = H - a = 4 - 0.688 = 3.312 \text{ M}$$

Нормальная сила в коньковом сечении 3-3 (рис. 2.1).

$$\begin{split} N_{3\text{-}3} &= (A - q \cdot x_3) \cdot \sin 18^0 30^1 + H \cdot \cos 18^0 30^1 = \\ &= (68.2 - 7.75 \cdot 8.8) \cdot 0.314 + 46.0 \cdot 0.949 = 43.65 \, \text{kH}. \end{split}$$

где
$$x_3 = \frac{I_p}{2} = 8.8 \text{ м}$$

Геометрические характеристики в биссектрисном сечении 1-1 и сечениях 1-2 и 1-3.

Расчетная площадь:

$$F_{\delta} = h_{\delta}b = 1.152 \cdot 0.14 = 16.128 \cdot 10^{-2} \text{ m}^2$$

$$h_{\delta} = \frac{h_{y}}{\cos 36.67^{\circ}} = \frac{0.924}{0.802} = 1.152 \,\text{M}$$

$$\textbf{F}_{\text{1--2}} = \textbf{F}_{\text{1--3}} = \textbf{h}_{\text{v}} \textbf{b} = 0.924 \cdot 0.14 = 12.936 \cdot 10^{-2} \ \textbf{m}^2$$

Момент сопротивления:

$$W_{\delta} = \frac{bh_{\delta}^2}{6} = \frac{0.14 \cdot 1.152^2}{6} = 30.966 \cdot 10^{-3} \,\text{m}^3$$

$$W_{1-2} = W_{1-3} = \frac{bh_y^2}{6} = \frac{0.14 \cdot 0.924^2}{6} = 19.921 \cdot 10^{-3} \,\text{m}^3$$

Расчетное сопротивление на сжатие умножаются на коэффициенты m_{6} , m_{cn} , m_{B} .

При высоте сечения больше 50 см, коэффициент m_6 находим по интерполяции значений таб.7 [1]:

для высоты
$$h_{\bar{0}} = 115.2$$
см $m_{\bar{0}} = 0.85 - 0.05 \frac{115.2 - 100}{20} = 0.812$;

для высоты
$$h_y = 92.4$$
см $m_6 = 0.9 - 0.05 \frac{92.4 - 80}{20} = 0.869$,

коэффициент $m_{cn}=1$, т.к. толщина слоя клеёного сечения принята 33 мм (табл.8 [1]), коэффициент $m_{\rm B}=1$ по таб.5 [1].

тогда
$$R_c = 15 \cdot 0.812 \cdot 1 = 12.18$$
 мПа

Проверка максимальных напряжений в биссектрисном сечении.

Соединение клееных элементов стойки и ригеля производится на зубчатый шип под углом по всему сечению. Эпюра напряжений имеет криволинейное очертание (см. рис. 2.3), поэтому проверку в таких сечениях следует производить согласно формулам [5]:

Для сжатой зоны вдоль оси «х» под углом к волокнам а:

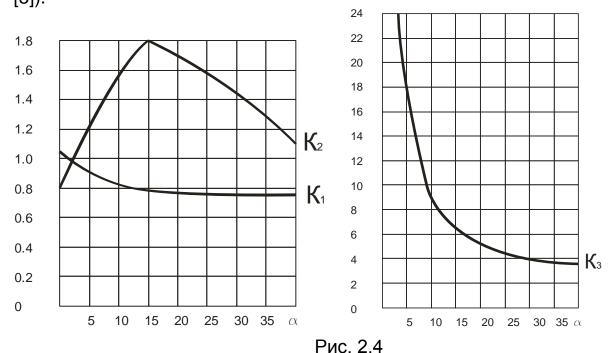
$$(\alpha = 90^{\circ} - \alpha_1 - \alpha^1 = 90^{\circ} - 36.65^{\circ} - 16.7^{\circ} = 36.65^{\circ})$$

$$\sigma_{x_c} = \frac{M_{\text{d}}}{K_1 W_{\delta}} + \frac{N}{F_{\delta}} \le R_{cM\alpha}$$
 (1)

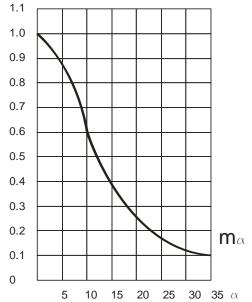
для зоны, растянутой вдоль оси «Х» под углом к волокнам а:

$$\sigma_{x_p} = \frac{M_{A}}{K_2 W_{\delta}} - \frac{N}{F_{\delta}} \le R_u m_{\alpha}$$
 (2)

для сжатия вдоль оси «у» под углом к волокнам β =90°- α


$$\sigma_{y_c} = \frac{M_{A}}{K_3 W_{\delta}} \le R_{cM\beta} \tag{3}$$

где F_δ, W_δ-площадь и момент сопротивления биссектрисного сечения;


 $R_{\text{см}\alpha},\ R_{\text{см}\beta},\ R_{\text{u}}$ - соответственно расчетные сопротивления древесины смятию под углом α и β к волокнам и изгибу, определяются без введения 30

коэффициентов m_{δ} и $m_{c_{\Pi}}$ по СНИП II-25-80 пп.3.1 и 3.2;

 k_1 , k_2 , k_3 — коэффициенты, принимаемые по графику рис. 2.4 (рис.13 [5]).

 m_{α} – коэфф. зависящий от угла наклона волокон, принимаем по рис 2.5.

2.5 График зависимости при ширине сечения рамы 14см, коэффициента m_{α} от угла тогда для α =35,65 0 ,sin α =0.597 наклона волокон α

Расчетное сопротивление под углом определяется по формуле (2) [1]:

$$R_{CM\alpha} = \frac{R_{CM}}{1 + \left(\frac{R_{CM}}{R_{CM90}} - 1\right) \sin^3 \alpha}$$

сопротивление смятию вдоль волокон

 R_{cm} =15мПа и поперек волокон R_{cm90} =

3мПа (табл.3 [1]) для древесины сосны

Принимаем

расчетное

$$R_{CM\alpha} = \frac{15}{1 + (15/3 - 1)0,597^3} = 8,1 \text{ M}\Pi a$$

для β =90-36,65=53,35; $\sin\beta$ =0.802.

$$R_{CM\beta} = \frac{15}{1 + (15/3 - 1)0,802^3} = 4,9 \text{ M}\Pi a$$

Изгибающий момент по деформируемой схеме:

$$M_{\text{d}} = M_{\text{max}}/\xi \qquad \xi = 1 - \frac{N}{\phi \cdot k_{\text{MN}} \cdot R_{c} \cdot m_{\delta} \cdot m_{cn} \cdot m_{B} \cdot F_{\delta}}$$

$$\phi = \frac{3000}{\lambda^2}; \quad \lambda = \frac{I_p}{0.289 \cdot h_{\delta}},$$

где $I_p = -$ длина полурамы по осевой линии.

Тогда расчетная длина:

$$I_p = I_{c\tau} + I_{p\mu\Gamma} = 3.66 + 9.01 = 12.67 \text{M}_2$$

где I_{ct} = 3.66 м – длина стойки по оси рамы;

 I_{pur} =9.01 м — длина ригеля по оси рамы.

$$\lambda = \frac{I_p}{0.289 \cdot h_6} = \frac{12.67}{0.289 \cdot 1.152} = 38.06; \qquad \phi = \frac{3000}{\lambda^2}$$

Для элементов переменного по высоте сечения коэффициент ϕ следует умножить на коэффициент $K_{\text{ЖN}}$, принимаемый по табл.1 прил.4 [1].

$$K_{KKN} = 0.66 + 0.34 \cdot \beta = 0.66 + 0.34 \cdot 0.344 = 0.78$$

где
$$\beta = \frac{h_{on} + h_{\kappa}}{2 \cdot h_{\tilde{o}}} = \frac{0,429 + 0,363}{2 \cdot 1.152} = 0,344;$$

$$\varphi = \frac{3000}{\lambda^2} = \frac{3000}{38.06^2} = 2.07$$

$$K_{\text{wN}} \cdot \varphi = 0.78 \cdot 2.07 = 1.61$$

Значение $K_{kN} \cdot \phi$ не болжно быть больше 1, поэтому принимаем $K_{kN} \cdot \phi = 1$

тогда
$$\xi = 1 - \frac{N \cdot \gamma}{\varphi \cdot k_{\mathsf{wN}} \cdot R_c \cdot m_6 \cdot m_{cn} \cdot m_{s} \cdot F_6} = 1 - \frac{43.65 \cdot 0.95 \cdot 10^{-3}}{1 \cdot 15 \cdot 0.812 \cdot 1 \cdot 1 \cdot 16.128 \cdot 10^{-2}} = 0.979,$$

где N=43.65 кH - продольная сила в коньковом сечении 4-4.

$$M_{_{\rm I\! I}} = \frac{M_{_{\! \delta}}}{\xi} = \frac{151.53}{0,979} = 154.78 \ \ \kappa H \cdot \mbox{m}.$$

Полученные значения подставляем в формулы (1,2,3) нормальных напряжений.

Для перевода напряжений в МПа в соответствии в СИ используем коэффициент 10^{-3.}

Сжатие вдоль оси « х» под углом к волокнам α

$$\sigma_{X_c} = \frac{80.62 \cdot 10^{-3}}{16.128 \cdot 10^{-2}} + \frac{154.78 \cdot 10^{-3}}{0.7 \cdot 30.966 \cdot 10^{-3}} = 7.64 \text{ M}\Pi \text{a} < 8,1 \text{ M}\Pi \text{a};$$

где k_1 =0.7, рис. 2.4.

Растяжение вдоль оси «х» под углом к волокнам α .

 $K_2 = 1.2$, $m_{\alpha} = 0.25$ по графикам рис. 2.4 и 2.5

Сжатие вдоль оси «у» под углом к волокнам $\beta = \varphi = 53.35^{\circ}$:

$$\sigma_{yc} = \frac{154.78 \cdot 10^{-3}}{3.99 \cdot 30.966 \cdot 10^{-3}} = 1.23 M\Pi a < 4.9 M\Pi a;$$

к₃=3.99 по граф. рис. 2.4.

Условия прочности рамы обеспечены.

Недонапряжение составляет
$$\mid \frac{3.67 - 3.75}{3.75} \mid \cdot 100\% = 2\% \prec 5\%$$

(Недонапряжение по одной из проверок прочности должно быть ≤5%). Окончательно принимаем высоту сечения рамы: $h_y = 92.4$ cm; $h_п = 42.9$ cm; $h_κ = 36.3$ cm.

Согласно п.6.46 [5] проверка нормальных напряжений в других сечениях стойки и ригеля рамы не требуется.

Проверка рамы на устойчивость плоской формы деформирования.

Проверка производится по формуле 33 [1]

$$\frac{N}{\phi \cdot R_c \cdot F_{6p}} + \left(\frac{M_{\text{M}}}{\phi_{\text{M}} \cdot R_u \cdot W_{6p}}\right)^n \leq 1,$$

Поскольку угол между стойкой и ригелем рамы 90°+16,7°= 106,7°< 130°, расчетную длину ригеля и стойки в соответствии с п.6.29 [1] следует принимать равной длинам их внешних подкрепленных кромок, т.е. для стойки $I_{\text{р.с.т}}$ = H=4 м, а для ригеля

$$I_{\text{р.риг}} = \sqrt{\frac{L_2^2}{2} + y_1^2} = \sqrt{\frac{18_2^2}{2} + 2.7^2} = 9.4 \text{ м}$$
 (см. рис.2.1).

Суммарная расчетная длинна по наружной кромке рамы:

$$I_{p.\text{Hap}} = 4 + 9, 4 = 13, 4 \text{ M}$$

Расчетная схема полурамы и эпюра моментов в заменяющем прямолинейном элементе имеет вид:

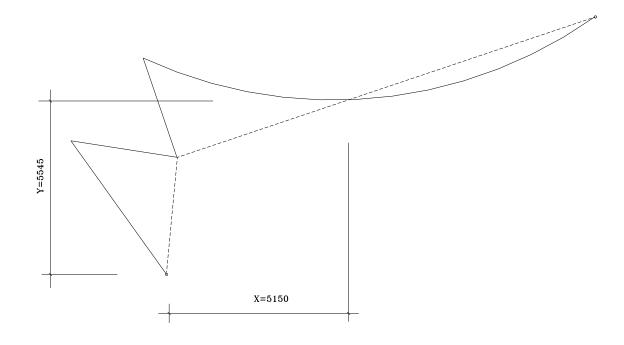


Рис 2.6

Находим координаты точки перегиба эпюры моментов, для этого приравниваем к нулю уравнение моментов (1).

$$\begin{split} \mathsf{M} &= \mathsf{A} \cdot \mathsf{x} - \frac{\mathsf{q} \cdot \mathsf{x}^2}{2} - \mathsf{H} \cdot \left[\mathsf{f} - \mathsf{tg} \gamma \cdot \binom{\mathsf{I}_p}{2} - \mathsf{x} \right] = 0 \\ \mathsf{где} \quad \mathsf{f} - \mathsf{tg} \gamma \cdot \binom{\mathsf{I}_p}{2} - \mathsf{x} \right) &= \mathsf{y} \qquad \gamma = 18^0 30^1 \quad \mathit{tg} \gamma = 0.335 \\ & 68.2 \cdot \mathsf{x} - 7.75 \cdot \mathsf{x}^2 / 2 - 46.0 \cdot \left[6.52 - 0.335 \cdot (8.8 - \mathsf{x}) \right] = 0 \\ & 68.2 \mathsf{x} - 3.875 \mathsf{x}^2 - 299.92 + 135.6 - 15.41 \mathsf{x} = 0 \\ & \mathsf{x}^2 - 13.623 \mathsf{x} + 42.405 = 0 \\ & \mathsf{x} = \frac{\mathsf{b}}{2} \pm \sqrt{\frac{\mathsf{b}^2}{4} - \mathsf{c}} \\ & \mathsf{x} = \frac{13.623}{2} \pm \sqrt{13.623}^2 / 4 - 42.405 = 6.8115 \pm 1.998 \\ & \mathsf{x}_1 = 8.8 \\ & \mathsf{x}_2 = 4.814 \end{split}$$

Точка перегиба находится на расстоянии x<0,5L, этому условию удовлетворяет корень x=4,814

$$y = 6.52 - 0.335 \cdot (8.8 - 4.814) = 5.18 \text{ M},$$

Расчетная длина рамы по наружной кромке имеет 2 участка, первый

$$I_{\text{p1}} = H_{\text{ct}} + \frac{x + \frac{h_{\text{n}}}{2}}{\cos \alpha^{1}} = 4 + \frac{4.814 + 0.429}{0.958} = 9.25$$
м, где имеются закрепления по

растянутой зоне (по ригелю – прогонами или плитами, по стойке – стеновыми панелями) и второй $I_{p2} = I_{p.hap.} - I_{p1} = 13,4-9,25 = 4.15м.$, где нет закреплений растянутой зоны.

Расчет устойчивости плоской формы деформирования производим по формуле:

$$\frac{N}{\phi \cdot R_{c} \cdot F_{\delta p}} + \left(\frac{M_{A}}{\phi_{M} \cdot R_{u} \cdot W_{\delta p}}\right)^{n} \le 1, \tag{4}$$

для первого участка с показателем n=1 и для второго участка с показателем n=2.

Рассмотрим первый участок.

Гибкость из плоскости рамы:

$$\lambda_y = \frac{I_{p1}}{0.289 \cdot b} = \frac{925}{0.289 \cdot 14} = 228,6$$

коэффициент продольного изгиба:

$$\phi_y = \frac{3000}{\lambda_y^2} = \frac{3000}{228,6^2} = 0.057$$
.

Коэффициент ϕ_{M} определяем по формуле (23) [1]:

$$\varphi_{\rm M} = 140 \frac{{\sf b}^2}{{\sf l}_{\rm p1}^2 \cdot {\sf h}} \cdot {\sf k}_{\rm \varphi}$$
, где ${\sf k}_{\rm \varphi}$ - коэффициент, зависящий от формы эпюры

изгибающих моментов на участке I_{р1}, определяемый по табл. 2 прил. 4 [1], для нашего случая имеем:

$$\begin{aligned} & k_{\varphi} = 1.35 + 0.3 \cdot (\overset{C}{/}_{l_{p1}}) = 1.35 + 0.3 \cdot (^{0.625} /_{9.25}) = 1.37, \\ & \text{где } c = l_{p1} - \overset{l_{p1}}{/_{2}} - l_{p.c\tau} = 9,25 - 9.25 /_{2} - 4.0 = 0.625 \\ & \text{где } l_{p.c\tau} = H_{c\tau} = 4 \text{M} \end{aligned}$$
 тогда
$$\phi_{\text{M}} = 140 \, \frac{b^{2}}{l_{p} \cdot h} \cdot k_{\varphi} = 140 \, \frac{14^{2}}{925 \cdot 115.2} \cdot 1.37 = 0.353$$

Ригель раскреплен по растянутой кромке, поэтому коэффициенты ϕ_y и ϕ_M соответственно следует умножать на коэффициенты $K_{\text{пм}}$ и $K_{\text{пN}}$.

Определяем коэффициенты:

$$k_{\Pi N} = 1 + \left[0.75 + 0.06 \left(\frac{I_p}{h} \right)^2 + 0.6 \alpha_p \cdot \frac{I_p}{h} - 1 \right] \cdot \frac{m^2}{m^2 + 1}$$
 (формула 34) [1]

Для прямолинейного участка ригеля $\alpha_p=0$, а отношение $\frac{m^2}{m^2+1}=1$, т.к. число закреплений $m \succ 4$, тогда

$$\begin{aligned} k_{\Pi N} &= 1 + \left[0.75 + 0.06 \cdot \left(\frac{925}{115.2}\right)^2 - 1\right] = 4.62 \\ k_{\Pi M} &= 1 + \left[0.142 \cdot \frac{l_p}{h} + 1.76 \cdot \frac{h}{l_p} + 1.4\alpha_3 - 1\right] \cdot \frac{m^2}{m^2 + 1} \text{(формула 24[1])}. \\ k_{\Pi M} &= 1 + \left[0.142 \cdot \frac{925}{115.2} + 1.76 \cdot \frac{115.2}{925} - 1\right] = 1.36. \end{aligned}$$

Подставляем полученные значения в формулу:

$$\frac{80.62 \cdot 10^{-3}}{0,057 \cdot 4.62 \cdot 15 \cdot 0.812 \cdot 16.128 \cdot 10^{-2}} + \frac{154.78 \cdot 10^{-3}}{0.353 \cdot 1.36 \cdot 15 \cdot 0.812 \cdot 30.966 \cdot 10^{-3}} = 1.01 \times 10^{-1}$$

Устойчивость плоской формы деформирования не обеспечена.

37

Если условия устойчивости не обеспечены, т.е значение формулы (4) \succ 1, то необходимо поставить вертикальные связи между рамами (распорки), соединив их попарно по длине здания, тем самым уменьшить расчётный пролёт, и повторить проверку.

В данном случае расчетный пролет равен: $I_p^1 = \frac{I_{p1}}{2} = \frac{9,25}{2} = 4,625 \text{ м}$ и устойчивость плоской формы деформирования будет явно обеспечена.

Для второго участка.

Расчетная длина данного участка равна $I_{p2} = 4.15 \text{ м.}$ (см. выше)

Расчетная длина данного участка по осевой линии равна:

$$I_{p2}^{1} = \frac{1/2 - x}{\cos 18^{0}30} = \frac{8.8 - 4.814}{0.949} = 4.2 \text{M}.$$

Определяем максимальную высоту сечения ригеля на данном участке:

$$h^1 = h_{\kappa} + \frac{(h_y - h_{\kappa}) \cdot I_{p2}}{I_{p,pM\Gamma} - a} = 36.3 + \frac{(92.4 - 36.3) \cdot 415}{940 - 68.8} = 63.02 \text{cm}$$

Определяем максимальный момент и продольную силу в сечении с

координатами
$$x_2 = X + \frac{I_{p2}^1 \cdot Cos\alpha^1}{2} = 4.814 + \frac{4.2 \cdot 0.949}{2} = 6.81$$
 м

$$y_2 = y + \frac{c \cdot (\kappa - \frac{I_{p2}^1 \cdot cos\alpha^1}{2})}{\kappa} = 3.656 + \frac{2.864 \cdot (8.5838 - \frac{4.2 \cdot 0.949}{2})}{8.5838} = 5.86 \text{M}$$

Где с и к подсчитаны выше.

(координаты определены по правилам геометрии)

$$\mathsf{M}_2 = \mathsf{A} \cdot \mathsf{x}_2 - \frac{\mathsf{q} \cdot \mathsf{x}_2^{\ 2}}{2} - \mathsf{H} \cdot \mathsf{y}_2 = 68.2 \cdot 6.81 - \frac{7.75 \cdot 6.81^2}{2} - 46.0 \cdot 5.86 = 3.72 \kappa \mathsf{H} \cdot \mathsf{M}$$

$$N_2 = (A - q \cdot x_2) \cdot \sin 18^0 30 + H \cdot \cos 18^0 30 =$$

= $(68.2 - 7.75 \cdot 6.81) \cdot 0.314 + 46.0 \cdot 0.949 = 48.5 \text{ kH}.$

Для определения величины момента по деформируемой схеме определяем площадь и момент инерции сечения:

$$F_2 = h^1 \cdot b = 63.02 \cdot 14 = 882.28 \text{cm}^2$$
 $W = \frac{14 \cdot 63.02^2}{6} = 9266.88 \text{cm}^3$

По интерполяции получим значения коэффициента m_{δ} для $h^1=63.02$ см по табл.7[1]:

$$m_{\delta} = 0.96 - \frac{0.96 - 0.93}{10} \cdot 3.02 = 0.95$$

Для учёта переменной высоты сечения находим по табл.1 прил.4 [1]:

$$k_{\text{MN}} = 0.66 + 0.34 \cdot \beta$$
 $\beta = \left(\frac{h_{\text{K}}}{\cdot h^{1}}\right) = \frac{36.3}{63.02} = 0.576$

$$k_{xN} = 0.66 + 0.34 \cdot 0.576 = 0.856$$

Определяем гибкость:

$$\lambda_x = \frac{I_{p2}}{0.289 \cdot h^1} = \frac{4.15}{0.289 \cdot 0.6302} = 22.79 \,, \ \text{тогда}$$

$$\phi_x = \frac{3000}{\lambda_x^2} = \frac{3000}{22.79^2} = 5.77 \succ 1 \quad \text{так как } \phi_x \cdot k_{x\!N} = 5.77 \cdot 0.856 = 4.9 \succ 1,$$

принимаем $\phi_x \cdot k_{xN} = 1$, тогда

$$\xi_1 = 1 - \frac{N \cdot \gamma}{\phi \cdot k_{\text{MN}} \cdot R_c \cdot m_6 \cdot m_{cn} \cdot F_6} = 1 - \frac{43.65 \cdot 0.95}{1 \cdot 1.5 \cdot 0.95 \cdot 1 \cdot 882.28} = 0.967$$

Где N=43.65кH -продольная сила в ключевом шарнире.

$$M_{\text{A}} = \frac{M_2}{\xi_1} = \frac{3,72}{0,967} = 3,85 \text{ kH} \cdot \text{M}$$

Гибкость из плоскости рамы:

$$\lambda_y = \frac{I_{p2}}{0.289 \cdot b} = \frac{4.15}{0.289 \cdot 0.14} = 102.57 \text{ тогда } \phi_y = \frac{3000}{\lambda_y^2} = \frac{3000}{102.57^2} = 0.285$$

$$\phi_\text{M} = 140 \frac{b^2}{I_p \cdot h} \cdot k_\varphi = 140 \frac{14^2}{415 \cdot 63.02} \cdot 1.13 = 1.19$$

При расчёте элементов переменного по высоте сечения, не имеющих закреплений из плоскости по растянутой от момента кромки, при расчёте устойчивости плоской формы деформирования, коэффициенты ϕ и ϕ_{M} следует умножать на коэффициенты K_{MN} и K_{MM} по табл. 1 и 2 приложения 4 [1].

$$k_{xN} = 0.07 + 0.93\beta = 0.07 + 0.93 \cdot 0.576 = 0.606$$

где
$$\beta = \left(\frac{h_{\kappa}}{h^1}\right) = \frac{36.3}{63.02} = 0.576$$

$$k_{xM} = \beta^{1/2} = \sqrt{0.576} = 0.759$$

Подставляем полученные значения в формулу проверки устойчивости плоской формы деформирования:

$$\begin{split} \frac{N}{\phi \cdot R_c \cdot F_{6p}} + & \left(\frac{M_{\text{pl}}}{\phi_M \cdot R_u \cdot W_{6p}} \right)^n \leq 1, \\ \frac{48.5}{0.285 \cdot 0.606 \cdot 1.5 \cdot 0.95 \cdot 882.28} + & \left(\frac{385}{1.19 \cdot 0.759 \cdot 1.5 \cdot 0.95 \cdot 9266.88} \right)^2 = 0.224 \prec 1 \end{split}$$

Устойчивость плоской формы деформирования на втором участке 40 обеспечена.

Расчет конькового узла (см. рис.2.6)

Максимальная поперечная сила в коньковом узле возникает при несимметричной временной снеговой равномерно-распределённой нагрузке на половине пролёта, которая воспринимается парными накладками на болтах.

Максимальная поперечная сила в коньковом узле при несимметричной снеговой нагрузке:

$$Q = \frac{S \cdot I_p}{8} = \frac{5.4 \cdot 17.6}{8} = 11.88 \text{ kH}.$$

где S= 5.4 кH/м - погонная снеговая нагрузка см. табл. 2.1,

Определяем усилия, действующие на болты, присоединяющие накладки к раме:

$$R_1 = \frac{Q}{1 - \frac{l_1}{l_2}} = \frac{11.88}{1 - \frac{1}{3}} = 17.82 \text{ kH} \qquad R_2 = \frac{Q}{\frac{l_2}{l_1} - 1} = \frac{11.88}{\frac{3}{1} - 1} = 5.94 \text{ kH}$$

где І₁- расстояние между первым рядом болтов в узле;

 I_2 - расстояние между вторым рядом болтов.

По правилам расстановки нагелей отношение между этими расстояниями может быть $\frac{l_1}{l_2} = \frac{1}{2}$ или $\frac{l_1}{l_2} = \frac{1}{3}$. Мы приняли отношение $\frac{l_1}{l_2} = 1/3$, чтобы получить меньшие значения усилий.

Принимаем диаметр болтов 18 мм и толщину накладок 75 мм. (Толщина накладки примерно должна быть равна половине ширины рамы.)

Несущая способность на один рабочий шов при направлении передаваемого усилия под углом 90° к волокнам согласно табл. 17,19 [1] находим из условий:

1. Изгиба болта:

$$T_{_{\text{И}}}=(1,8d^2+0,02a^2)\sqrt{k_{_{\text{Q}}}}=(1,8\cdot 1,8^2+0,02\cdot 7,5^2)\sqrt{0,575}=5.28~\text{кH, но не}$$
 более
$$T_{_{\text{U}}}=2.5\cdot d^2\cdot \sqrt{k_{_{\text{Q}}}}=2.5\cdot 1.8^2\sqrt{0.575}=6.14~\text{кH}$$

где а - толщина накладки (см); d - диаметр болтов (см),

 k_{α} - коэффициент зависящий от диаметра болтов и величины угла между направлением усилия и волокнами древесины накладки по табл.19 [1].

2. Смятия крайних элементов — накладок с учётом угла между направлением усилия и волокнами древесины рамы ($\alpha = 90^{\circ}$):

$$T_{\text{CM}} = 0.8 \cdot a \cdot d \cdot k_{\alpha} = 0.8 \cdot 7.5 \cdot 1.8 \cdot 0.575 = 6.21 \text{ kH}.$$

3. Смятие среднего элемента- рамы с учётом угла между направлением усилия и волокнами древесины рамы ($\alpha = 90^{\circ} - 16.7^{\circ} = 73.3^{\circ}$)

$$T^{1}_{CM} = 0.5 \cdot C \cdot d \cdot k_{\alpha} = 0.5 \cdot 14 \cdot 1.8 \cdot 0.63 = 7.94 \text{ kH},$$

где с - ширина среднего элемента – рамы (см),

Минимальная несущая способность одного болта на один рабочий шов из данных трёх условий: $T_{min} = 5.28 \kappa H$, тогда

Необходимое количество болтов в ближайшем к узлу ряду:

$$n_{6} = \frac{R_{1}}{n_{\text{m}} \cdot T_{\text{min}}} = \frac{17.82}{2 \cdot 5.28} = 1,7$$
, принимаем 2 болта.

Количество болтов в дальнем от узла ряду:

$$n_0^1 = \frac{R_2}{n_{\text{uu}} \cdot T_{\text{min}}} = \frac{5,94}{2 \cdot 5.28} = 0,6$$
, принимаем 1 болт.

Принимаем расстояние между болтами по правилам расстановки СНиП $I_1 \ge 2 \cdot 7 \cdot d = 25.2 \text{см} \,, \quad \text{принимаем} \quad 26 \quad \text{см} \,, \quad \text{тогда} \quad \text{расстояние}$ $I_2 = 3 \cdot I_1 = 3 \cdot 26 = 78 \text{см} \,.$

Ширину накладки принимаем ≥ 10 d, что равно 180 мм, по сортаменту ГОСТ 24454-80*(3) принимаем ширину накладки 200 мм, тогда расстояние от края накладки до болтов $S_2 \ge 3d = 3 \cdot 1, 8 = 5.4$ см ≈ 6 см, расстояние между болтами $S_3 = b_H - 2 \cdot S_2 = 20 - 2 \cdot 6 = 8$ см что больше чем $S_3 \ge 3,5d = 3,5 \cdot 1,8 = 6.3$ см.

Изгибающий момент в накладках согласно схемы (рис.2.6):

$$M_{H} = \frac{Q \cdot I_{1}}{2} = \frac{11.88 \cdot 26}{2} = 154.44 \text{ kH} \cdot \text{cm}$$

Момент инерции накладки, ослабленной двумя отверстиями диаметром 1.8 см:

$$\begin{split} J_{_{H}} &= \frac{\delta_{_{H}} \cdot b_{_{H}}^3}{12} - 2 \frac{\delta_{_{H}} \cdot d^3}{12} - 2 \cdot \delta_{_{H}} \cdot d \cdot \left(\frac{S_3}{2}\right)^2 = \\ &= \frac{7.5 \cdot 20^3}{12} - 2 \cdot \frac{7.5 \cdot 1.8^3}{12} - 2 \cdot 7.5 \cdot 1.8 \cdot \left(\frac{8}{2}\right)^2 = 4965.71 \text{cm}^3 \end{split}$$

где S_3 - расстояние между болтами.

Момент сопротивление накладки
$$W_{_H} = \frac{J_{_H}}{b_{_H}/2} = \frac{4965.71}{20/2} = 496.57 \text{cm}^3$$

Напряжение в накладках:

$$\sigma = \frac{M_{_H}}{W_{_H} \cdot 2} = \frac{154.44}{2 \cdot 496.57} = 0.156 \, \frac{\text{KH}}{\text{cm}^2} = 1.56 \text{M} \text{Па} \ \, \prec R_{_H} = 13 \text{м} \text{Па} \ \, ,$$

где $R_u = 13 M \Pi a$ — расчетное сопротивление древесины изгибу по табл.3[1].

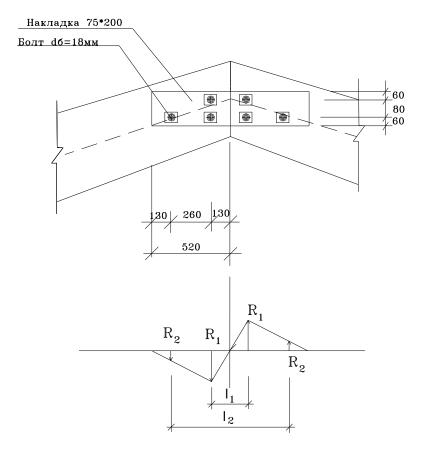


Рис.2.6 Коньковый узел.

Расчет опорного узла. (Рис 2.7)

 N_0 =A=68.2 κ H; Q_0 =H=44.8 κ H; Fon=14·42.9=600.6 cm²;

$$\sigma_{_{\text{CM}}} = N/F_{_{\text{O\Pi}}} = 68,2/600.6 = 0.114 \, \frac{\text{KH}}{\text{cm}^2} \prec R_{_{\text{CM}}} = 1,5 \text{KH/cm}^2$$
 ,

где $R_{\text{см}} = 1.5 \frac{\text{кH}}{\text{cm}^2}$ - расчетное сопротивление смятию (сжатию) вдоль волокон табл.3 [1].

Требуемая высота диафрагмы из расчёта на смятие поперёк волокон древесины рамы от действия распора:

$$h_{mp} = \frac{H}{bR_{CM90}} = \frac{46}{14 \cdot 3} = 10.95 cm$$

где
$$R_{cM90} = 3M\Pi a = 0,3\kappa H/cm^2$$

b- ширина сечения рамы, H –распор.

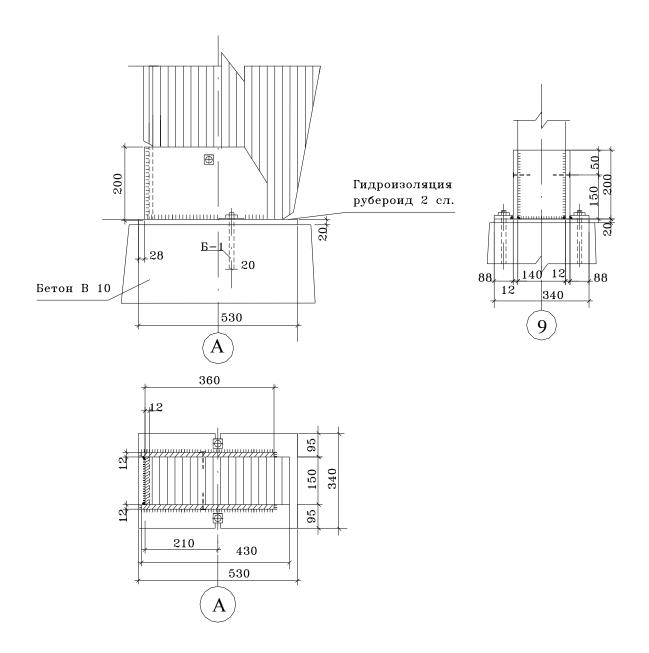


Рис. 2.7 Опорный узел рамы.

Конструктивно принимаем высоту диафрагмы $h^1 = 20$ см.

Рассчитываем опорную вертикальную диафрагму, воспринимающую распор, на изгиб как балку, частично защемленную на опорах, с учетом пластического перераспределения моментов:

$$M = \frac{H \cdot b}{16} = \frac{46 \cdot 14}{16} = 40.25 \text{ kH} \cdot \text{cm}$$

Требуемый момент сопротивление вертикальной диафрагмы:

$$W_{\tau p} = \frac{M \cdot \gamma_{\pi}}{R_{\nu} \cdot \gamma_{c}} = \frac{40.25 \cdot 1}{21 \cdot 0.9} = 2.13 \text{cm}^{3},$$

где $R_y = 210 \text{м}\Pi a = 21 \frac{\text{кH}}{\text{cm}^2}$ - расчетное сопротивление стали по пределу текучести СНиП [6].

Этому моменту сопротивления должен быть равен момент сопротивления, определенный по формуле:

$$W = \frac{h^1 \cdot \delta^2}{6} = 20 \cdot \delta^2/6$$
 где δ - толщина диафрагмы.

Тогда
$$\delta = \sqrt{\frac{6 \cdot W_{\tau p}}{h^1}} = \sqrt{\frac{6 \cdot 2,13}{20}} = 0,8$$
 см

Принимаем $\delta = 1.2$ см

Боковые пластины и опорную плиту принимаем той же толщины в запас прочности.

Предварительно принимаем следующие размеры опорной плиты:

длина приты принята: $I_{nn} = h_{on} + \approx 2 \cdot 5$ см,

ширина плиты $b_{nn} = b + 2 \cdot 10$ см,

Длинна $I_{пл}$ =530 мм, ширина $b_{пл}$ =340 мм (рис. 2.7) включая зазор c=5мм между боковыми пластинами и рамой по 0.5см.

Для крепления башмака к фундаменту пинимаем анкерные болты

диаметром 20 мм, имеющие следующие геометрические характеристики [3]:

$$F_{\text{fp}} = 3.14 \text{cm}^2; \quad F_{\text{HT}} = 2.45 \text{cm}^2$$

Болты работают на срез от действия распора в раме.

Для того, чтобы срез воспринимался полным сечением болта, ставим под гайками шайбы толщиной 10мм.

срезывающее усилие:

$$N_{cp} = \frac{H}{2} = \frac{46}{2} = 23 \text{ kH}$$

Напряжение среза определим по формуле:

$$\tau = \frac{N_{\text{cp}}}{F_{\text{6p}}} = \frac{23}{3.14} = 7.32 \, \frac{\text{KH}}{\text{CM}^2} \le \frac{R_c}{\gamma_n} = \frac{15 \cdot 0.85}{0.95} = 13.4 \, \frac{\text{KH}}{\text{CM}^2} \, ;$$

где R_c - расчётное сопротивление срезу стали класса C235, равное в соответствии с таб. 1 * [6] СНиП II-23-81 * 0.85 R_y .

Условие прочности анкерных болтов выполняется.

ОГЛАВЛЕНИЕ

1.	Пример расчёта гнутоклеёной	
	рамы	.1
	Пример расчёта клеёной рамы с соединением ригеля и стойки	
	на зубчатый шип	21