МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ»

РАБОЧАЯ ПРОГРАММА

Шифр	Наименование дисциплины (модуля)
Б1.Б.23	Теплотехника

Код направления подготовки	23.03.02
Направление подготовки	Наземные транспортно-технологические
типризичний подготовин	комплексы
Наименование ОПОП	Подъемно-транспортные, строительные,
Паименование опоп	дорожные машины и оборудование
	(прикладной бакалавриат)
Год начала подготовки	2015
Уровень образования	бакалавриат
Форма обучения	очная, очно-заочная

Разработчики:

должность	ученая степень, звание	подпись	ФИО
профессор	к.т.н., доцент		Мирам А.О.

Рабочая программа рассмотрена и одобрена на заседании кафедры: «Теплотехника и теплогазоснабжение»

должность	подпись		ученая степень и зван		ние, ФИО	
Зав. кафедрой			д.т.н.	., профессо	p Xa	ванов П.А.
год обновления	2015					
Номер протокола	№ 1					
Дата заседания кафедры ТТГС	28.08.2015					

Рабочая программа утверждена и согласована:

Подразделение/комиссия	Должность	ФИО	подпись	Дата
Методическая комиссия	председатель	Густов Д.Ю.		
НТБ	директор	Ерофеева О.Р.		
ЦОСП				

1. Цель освоения дисциплины

Целью освоения дисциплины «Теплотехника» является системное изложение положений в области теплотехнического оборудования в целом, которые необходимы бакалавру для понимания основ функционирования, происходящих процессов, проектирования, а также эксплуатации теплового оборудования, интенсификации и оптимизации современных энерготехнологических процессов для подготовки бакалавра по профилю «Подъемнотранспортные, строительные, дорожные машины и оборудование».

2. Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с планируемыми результатами освоения образовательной программы

Компетенция по ФГОС	Код компе- тенции по ФГОС	Основные показатели освоения (показатели до- стижения результата)	Код показателя освоения
способностью использовать зако-		Знает действующие нормативные документы РФ в области инженерных систем	31
ны и методы математики, естественных, гуманитарных и эко-	ОПК-4	Умеет выбирать информацию, необходимую для проведения конкретных расчетов	У1
номических наук при решении профессиональных задач		Имеет навыки использования полученной информации при проектировании	H1

3. Указание места дисциплины (модуля) в структуре образовательной программы

Дисциплина «Теплотехника» относится к базовой части Блока 1 "Дисциплины (модули)" основной профессиональной образовательной программы по направлению подготовки 23.03.02 "Наземные транспортно-технологические" (уровень бакалавриата), профиль «Подъемно-транспортные, строительные, дорожные машины и оборудование» и является обязательной к обучению.

Дисциплина «*Теплотехника*» базируется на знаниях, умениях и навыках, приобретенных студентами в ходе изучения дисциплин: «Математика», «Физика».

Требования к входным знаниям, умениям и компетенциям студентов.

Студент должен:

Знать:

- фундаментальные основы физики, включая разделы «молекулярная физика», «теплота»;
- фундаментальные основы высшей математики, включая линейную алгебру, математический анализ и прикладную математику;
- терминологию, основные понятия, относящиеся к механике жидкости и газа;;

Уметь:

- проводить формализацию поставленной задачи на основе современного математического аппарата;
- пользоваться справочной технической литературой;
- формулировать и решать физические задачи, связанные с гидравликой, технической термодинамики и тепломассобменом;

Владеть:

- первичными навыками и основными методами решения математических задач;
- первичными навыками постановки и основными методами решения задач молекулярной физики;

Дисциплины, для которых дисциплина «Теплотехника» является предшествующей:

«Детали машин и основы конструирования», «Двигатели внутреннего сгорания», «Гидро и пневмопривод»

4. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость дисциплины составляет 2 зачетных единиц 72 акад. часа.

Структура дисциплины:

Форма обучения - очная

- 40b	ма обучения - очная		T							,	
№ п/п					стоятел	ебной р тьную рудоем	цих-				
			þa	k		тная ра нающи	обота с обу мися	y-	a	Формы текущего контроля	
	Наименование раздела дисциплины (модуля)	Семестр	Неделя семестра	opi		Практико- ориентированные занятия			іая работ	успеваемости (по неделям семестра)	
			Недел	Лекции	Лабораторный практикум	Практические за- нятия	Групповые кон- сультации по КП/КР	KCP	Самостоятельная работа	Форма промежуточной аттестации (по семестрам)	
1.	Техническая термодинамика	5	1-8	8	8				12	Контроль выпол- нения и защита лабораторных ра- бот.	
2.	Теория тепломассообмена	5	9-12	6	6				12	Контроль выполнения и защита лабораторных работ.	
3	Основы расчета теплообменных аппаратов	5	13-18	4	4				12	Контроль выполнения и защита лабораторных работ.	
	Итого:			18	18				36	зачет	

Форма обучения - очно-заочная

Ф0р	ма обучения - очно-зас	J-111a	л								
№ п/п					стоятел	ебной р пьную ј грудоем	цих-				
			pa	k		_	бота с обу	y-	et.	Формы текущего контроля	
	Наименование разде- ла дисциплины	Семестр	Неделя семестра		чающимися Практико- ориентированные занятия				я работа	успеваемости (по неделям семестра)	
	дисциплины (модуля)	Cen	Неделя	Леции	Лабораторный практикум	Практические за-	Групповые кон- сультации по КП/КР	KCP	Самостоятельная работа	Форма промежуточной аттестации (по семестрам)	
1.	Техническая термодинамика	5	1-8	4	4				18	Контроль выполнения и защита лабораторных работ.	
2.	Теория тепломассообмена	5	9-12	4	4				18	Контроль выполнения и защита лабораторных работ.	
3	Основы расчета теплообменных аппаратов	5	13-18	2					18	Контроль выполнения и защита лабораторных работ.	
	Итого:			10	8				54	зачет	

5. Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий

5.1. Содержание лекционных занятий

5.1.2 Очная форма обучения:

	о тал форма ос		
No	Наименование		Кол-во
п/п	раздела дисци-	Тема и содержание занятия	акад.
11/11	плины (модуля)		часов
1	Техническая тер-	Предмет теплотехники, ее место и роль в системе подготов-	8
	модинамика	ки бакалавра. Проблемы современной теплотехники в связи	
		с развитием новой техники и технологии. Теплотехника в	
		строительстве.	
		Техническая термодинамика. Основные понятия и опреде-	
		ления. Параметры состояния. Уравнение состояния идеаль-	
		ных газов. Нормальные физические условия. Первый закон	
		термодинамики: его сущность, формулировки, аналитиче-	
		ское выражение. Теплоемкость. Внутренняя энергия, рабо-	
		та, теплота. Энтальпия, энтропия. Функции состояния и	
		функции процессов.	
		Термодинамические изопроцессы. Политропный процесс.	
		Уравнение политропы. Процессы в PV- и TS- координатах.	
		Второй закон термодинамики. Обратимые и необратимые	
		процессы. Сущность, основные формулировки второго за-	
		кона. Термодинамические циклы тепловых машин. Терми-	

	ческий КПД. Цикл Карно и его свойства. Интеграл Клаузиуса для обратимого и необратимого цикла. Аналитическое выражение второго закона термодинамики. Изменение энтропии и работоспособность изолированной термодинамической системы. Реальные газы и пары. Свойства реальных газов. Фазовые диаграммы. Процессы парообразования в диаграммах. Газовые смеси. Закон Дальтона. Влажный воздух. Основные параметры влажного воздуха. Определение характеристик и расчет процессов влажного воздуха с использованием і-d-диаграммы влажного воздуха Термодинамический анализ процессов в компрессорах.	
	диаграмма. Многоступенчатый компрессор. Изображение в PV- и TS- диаграммах термодинамич. процессов, протека-	
	Циклы двигателей внутреннего сгорания и их анализ. Циклы газотурбинных установок. Термический КПД цикла теп-	
T		
тепломассообмена	нятия и определения в процессах теплообмена: теплопроводность, закон Фурье, конвекция, коэффициент теплоотдачи, закон Ньютона-Рихмана. Излучение твердых тел, газов и паров. Закон Стефана-Больцмана. Передача теплоты через различные стенки при граничных условиях І-го и ІІІ-го рода. Уравнение теплопереда-	6
	ния. Критический диаметр изоляции. Передача теплоты че-	
Основы расчета теплообменных аппаратов	Приведение к безразмерной форме системы диф. уравнений конвективного теплообмена. Получение чисел подобия. Основы теории подобия. Числа подобия и их физический смысл. Критериальные зависимости для различных видов конвективного переноса. Теплообменные аппараты. Основы расчета. Классификация, схемы движения теплоносителей теплообменников. Основные расчетные соотношения. Конструктивный и повероч-	4
	Основы расчета теплообменных	Клаузиуса для обратимого и необратимого цикла. Аналитическое выражение второго закона термодинамики. Изменение энтропии и работоспособность изолированной термодинамической системы. Реальные газы и пары. Свойства реальных газов. Фазовые диаграммы. Процессы парообразования в диаграммах. Газовые смеси. Закон Дальтона. Влажный воздух. Основные параметры влажного воздуха. Определение характеристик и расчет процессов влажного воздуха с использованием і-d-диаграммы влажного воздуха Термодинамический анализ процессов в компрессорах. Поршневой компрессор, принцип действия. Индикаторная диаграмма. Многоступенчатый компрессор. Изображение в РV- и ТS- диаграммах термодинамич. процессов, протекающих в компрессорах. Циклы двигателей внутреннего сгорания и их анализ. Циклы двигателей внутреннего сгорания и их анализ. Циклы газотурбинных установок. Термический КПД цикла теплового двигателя. Теория Теория Теория теплообмена. Предмет и задачи. Основные понятия и определения в процессах теплообмена: теплопроводность, закон Фурье, конвекция, коэффициент теплоотдачи, закон Ньютона-Рихмана. Излучение твердых тел, газов и паров. Закон Стефана-Больцмана. Передача теплоты через различные стенки при граничных условиях І-го и ІІІ-го рода. Уравнение теплопередачи. Коэффициент теплопередачи. Термические сопротивления. Критический диаметр изоляции. Передача теплоты через оребренные стенки. Основы расчета Теплообменных аппаратов Приведение к безразмерной форме системы диф. уравнений конвективного теплообмена. Получение чисел подобия. Основы теории подобия. Числа подобия и их физический смысл. Критериальные зависимости для различных видов конвективного переноса. Теплообменные аппараты. Основы расчета. Классификация, схемы движения теплоносителей теплообменников. Основ-

5.1.2 Очно-заочная форма обучения:

No	Наименование		Кол-во
п/п	раздела дисци-	Тема и содержание занятия	акад.
11/11	плины (модуля)		часов
1	Техническая тер-	Предмет теплотехники, ее место и роль в системе подготов-	4
	модинамика	ки бакалавра. Проблемы современной теплотехники в связи	
		с развитием новой техники и технологии. Теплотехника в	
		строительстве.	
		Техническая термодинамика. Основные понятия и опреде-	
		ления. Параметры состояния. Уравнение состояния идеаль-	
		ных газов. Нормальные физические условия. Первый закон	
		термодинамики: его сущность, формулировки, аналитиче-	
		ское выражение. Теплоемкость. Внутренняя энергия, рабо-	
		та, теплота. Энтальпия, энтропия. Функции состояния и	
		функции процессов.	
		Термодинамические изопроцессы. Политропный процесс.	
		Уравнение политропы. Процессы в PV- и TS- координатах.	
		Второй закон термодинамики. Обратимые и необратимые	

		процессы. Сущность, основные формулировки второго закона. Термодинамические циклы тепловых машин. Термический КПД. Цикл Карно и его свойства. Интеграл Клаузиуса для обратимого и необратимого цикла. Аналитическое выражение второго закона термодинамики. Изменение энтропии и работоспособность изолированной термодинамической системы. Реальные газы и пары. Свойства реальных газов. Фазовые диаграммы. Процессы парообразования в диаграммах. Газовые смеси. Закон Дальтона. Влажный воздух. Основные параметры влажного воздуха. Определение характеристик и расчет процессов влажного воздуха с использованием і-dдиаграммы влажного воздуха Термодинамический анализ процессов в компрессорах. Поршневой компрессор, принцип действия. Индикаторная диаграмма. Многоступенчатый компрессор. Изображение в PV- и TS- диаграммах термодинамич. процессов, протекающих в компрессорах. Циклы двигателей внутреннего сгорания и их анализ. Циклы газотурбинных установок. Термический КПД цикла теп-	
2	Теория	лового двигателя. Теория теплообмена. Предмет и задачи. Основные по-	4
	тепломассообмена	нятия и определения в процессах теплообмена: теплопро-	
		водность, закон Фурье, конвекция, коэффициент теплоотда-	
		чи, закон Ньютона-Рихмана. Излучение твердых тел, газов и	
		паров. Закон Стефана-Больцмана. Передача теплоты через различные стенки при гра-	
		ничных условиях I-го и III-го рода. Уравнение теплопереда-	
		чи. Коэффициент теплопередачи. Термические сопротивле-	
		ния. Критический диаметр изоляции. Передача теплоты че-	
		рез оребренные стенки.	
3	Основы расчета	Приведение к безразмерной форме системы диф. уравнений	2
	теплообменных	конвективного теплообмена. Получение чисел подобия. Ос-	
	аппаратов	новы теории подобия. Числа подобия и их физический	
		смысл. Критериальные зависимости для различных видов	
		конвективного переноса. Теплообменные аппараты. Основы расчета. Классификация,	
		схемы движения теплоносителей теплообменников. Основ-	
		ные расчетные соотношения. Конструктивный и повероч-	
		ный тепловые расчеты рекуперативных теплообменников.	
	l .	1 1 2 1	

5.2. Лабораторный практикум 5.2.1 Очная форма обучения:

№ π/π	Наименование раздела дисциплины (модуля)	Тема и содержание лабораторной работы	Кол-во акад. часов
1	Определение средней теплоемкости воздуха при атмосферном давлении	 Изучить теоретические аспекты раздела 1.1. Получить исходные данные. Осуществить постановку задачи ЛР. Определить среднюю теплоемкость воздуха при атмосферном давлении. Проанализировать результаты, сравнить с табличными данными, сделать выводы. Оформить отчет по лабораторной работе. 	4
2	Исследование процессов во влажном воздухе	 Изучить теоретические аспекты раздела 1.3. Получить исходные данные. 	6

	1		
		3. Осуществить постановку задачи ЛР.	
		4. Рассчитать тепловой баланс установки и	
		эффективность процессов. Построить процессы на і-	
		d-диаграмме.	
		5. Проанализировать результаты, сделать выводы.	
		Оформить отчет по лабораторной работе.	
3		1. Изучить теоретические аспекты разделов 2.1,3.1.	4
	Исследование	2. Получить исходные данные.	
	теплоотдачи	3. Осуществить постановку задачи ЛР.	
	при свободном	4. Рассчитать коэффициент теплоотдачи опытный	
	движении	и теоретический с использование теории подобия.	
	воздуха	5. Проанализировать результаты, сделать выводы.	
		Оформить отчет по лабораторной работе.	
4		1. Изучить теоретические аспекты разделов 3.1.,	4
		3.2.	
		2. Получить исходные данные.	
	Определение коэффици-	3. Осуществить постановку задачи.	
	ента теплопередачи теп-	4. Рассчитать коэффициент теплопередачи	
	лообменного аппарата	пароводяного теплообменного аппарата опытный и	
		теоретический с использование теории подобия.	
		5. Проанализировать результаты, сделать выводы.	
		Оформить отчет по лабораторной работе.	

5.2.2. Очно-заочная форма обучения:

№ п/п	Наименование раздела дисциплины (модуля)	Тема и содержание лабораторной работы	Кол-во акад.
1	Определение средней теплоемкости воздуха при атмосферном давлении	 Изучить теоретические аспекты раздела 1.1. Получить исходные данные. Осуществить постановку задачи ЛР. Определить среднюю теплоемкость воздуха при атмосферном давлении. Проанализировать результаты, сравнить с табличными данными, сделать выводы. 	2
2	Исследование процессов во влажном воздухе	Оформить отчет по лабораторной работе. 6. Изучить теоретические аспекты раздела 1.3. 7. Получить исходные данные. 8. Осуществить постановку задачи ЛР. 9. Рассчитать тепловой баланс установки и эффективность процессов. Построить процессы на і-d-диаграмме. 10. Проанализировать результаты, сделать выводы. Оформить отчет по лабораторной работе.	2
3	Исследование теплоотдачи при свободном движении воздуха	 Изучить теоретические аспекты разделов 2.1,3.1. Получить исходные данные. Осуществить постановку задачи ЛР. Рассчитать коэффициент теплоотдачи опытный и теоретический с использование теории подобия. Проанализировать результаты, сделать выводы. Оформить отчет по лабораторной работе. 	2
4	Определение коэффици- ента теплопередачи теп- лообменного аппарата	6. Изучить теоретические аспекты разделов 3.1.,3.2.7. Получить исходные данные.8. Осуществить постановку задачи.	2

9. Рассчитать коэффициент теплопередачи пароводяного теплообменного аппарата опытный и теоретический с использование теории подобия. 10. Проанализировать результаты, сделать выводы.	
Оформить отчет по лабораторной работе.	

- 5.3. Перечень практических занятий: Учебным планом не предусмотрено
- 5.4. Групповые консультации по курсовым работам/курсовым проектам (при наличии выделенных часов контактной работы в учебном плане) Учебным планом не предусмотрено

5.5. Самостоятельная работа:

5.5.1 Очная форма обучения:

№ п/п	Наименование раздела дисциплины (модуля)	Содержание работы	Кол-во акад. часов
1	Техническая термодинамика	Закрепление теоретических основ раздела с использованием лекционного материала (1.1 -1.14), основной и дополнительной литературы: Подготовка конспекта, расчет, оформление, защита: - Лаб.раб1. Определение теплоемкости воздуха при атмосферном давлении Лаб.раб2. Основные процессы влажного воздуха Расчет основных параметров в основных точках цикла (РЗ, пп.1,2) - Расчет осн. параметров процессов идеального газа (РЗ п.3), построение графиков процессов в Рv-, Тѕ-координатах (РЗ п.4) Графическое определение работы и теплоты процессов (РЗ п.5) - Подготовка к контрольному опросу (КО-1) (разделы 1.1, 1.2): п.1. Основные параметры идеального газа. п.2. Основные газовые законы. п.3. Уравнение состояния идеального газа (задача) п.4. Построение в Рv-,Тѕ-координатах политропного процесса. п.5. по заданному графику определить процесс.	
2	Закрепление теоретических основ раздела с исполи зованием лекционного материала, основной и дополнительной литературы (разделы 2.1-2.2). Подготовка конспекта, расчет, оформление: - Лаб. раб3 «Определение коэффициента теплоот дачи горизонтальной трубы при свободной конвек ции» - Лаб. раб4 «Расчет коэффициента теплопередачи пароводяного теплообменного аппарата». - СР «Тепловой расчет водоподогревателя типа «труба в трубе» - Подготовка к КО-2 «Основы теории теплообмена Основные понятия (теплопроводность, конвекция, излучение, теплоотдача, теплопередача) и законы		12

		(Фурье, Ньютона-Рихмана, Ньютона-Рихмана) тео-	
		рии тепломассообмена. Термические сопротивления.	
		Расчет теплового потока через плоскую и цилиндри-	
		ческую стенку в граничных условиях I и III рода.	
		-Кр «Конструктивный расчет рекуперативного теп-	
		лообменника»	
		Закрепление теоретических основ раздела с исполь-	12
		зованием лекционного материала, основной и допол-	
		нительной литературы (разделы 3.1-3.2).	
	Основы расчета	Подготовка к защите:	
3	теплообменных	- Лаб. раб3,4	
	аппаратов	- Кр «Конструктивный расчет рекуперативного теп-	
		лообменника»	
		Закрепление теоретического курса. Подготовка к	
		защите Кр.	

5.5.2. Очно-заочная форма обучения:

№ п/п	Наименование раздела дисциплины (модуля)	Содержание работы	Кол-во акад. часов
1	Техническая термодинамика	Закрепление теоретических основ раздела с использованием лекционного материала (1.1 -1.14), основной и дополнительной литературы: Подготовка конспекта, расчет, оформление, защита: - Лаб.раб1. Определение теплоемкости воздуха при атмосферном давлении Лаб.раб2. Основные процессы влажного воздуха Расчет основных параметров в основных точках цикла (РЗ, пп.1,2) - Расчет осн. параметров процессов идеального газа (РЗ п.3), построение графиков процессов в Рv-, Тѕ-координатах (РЗ п.4) Графическое определение работы и теплоты процессов (РЗ п.5) - Подготовка к контрольному опросу (КО-1) (разделы 1.1, 1.2): п.1. Основные параметры идеального газа. п.2. Основные газовые законы. п.3. Уравнение состояния идеального газа (задача) п.4. Построение в Рv-,Тѕ-координатах политропного процесса.	
2	Теория тепломассообмена	Закрепление теоретических основ раздела с использованием лекционного материала, основной и дополнительной литературы (разделы 2.1-2.2). Подготовка конспекта, расчет, оформление: - Лаб. раб3 «Определение коэффициента теплоотдачи горизонтальной трубы при свободной конвекции» - Лаб. раб4 «Расчет коэффициента теплопередачи пароводяного теплообменного аппарата» СР «Тепловой расчет водоподогревателя типа «труба в трубе» - Подготовка к КО-2 «Основы теории теплообмена». Основные понятия (теплопроводность, конвекция,	18

		излучение, теплоотдача, теплопередача) и законы (Фурье, Ньютона-Рихмана, Ньютона-Рихмана) теории тепломассообмена. Термические сопротивления. Расчет теплового потока через плоскую и цилиндрическую стенку в граничных условиях I и III родаКр «Конструктивный расчет рекуперативного теплообменника»	
3	Основы расчета теплообменных аппаратов	Закрепление теоретических основ раздела с использованием лекционного материала, основной и дополнительной литературы (разделы 3.1-3.2). Подготовка к защите: - Лаб. раб3,4 - Кр «Конструктивный расчет рекуперативного теплообменника» Закрепление теоретического курса. Подготовка к защите Кр.	18

6. Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине (модулю)

Для самостоятельной работы обучающегося используется учебные материалы, представленные в разделе 8, 9.

7. Фонд оценочных средств для проведения промежуточной аттестации обучающих-ся по дисциплине (модулю)

7.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы

На примере очной формы обучения

Код компе-	Этапы формирования компетенций (разделы теоретического обучения)				
тенции по ФГОС	1	2	3		
ОПК-4	+	+	+		

7.2. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

7.2.1. Описание показателей и форм оценивания компетенций

		Форма оценивания			Į-
0		Текущий		Промежуточная	ени
И П	Показатели	кон	троль	аттестация	ОП
Код компетенции по ФГОС	освоения (Код пока- зателя освоения)	Контрольная работа	Защита лаб.раб.	Зачет	Обеспеченность оценивания компетенции
1	2	3	4	5	6
ОПК-4	31		+	+	+
	У1	+		+	+
	H1	+		+	+
ИТОГО		+ + +		+	

- 7.2.2. Описание шкалы и критериев оценивания для проведения промежуточной аттестации обучающихся по дисциплине (модулю) в форме Экзамена Не предусмотрено.
- 7.2.3. Описание шкалы и критериев оценивания для проведения промежуточной аттестации обучающихся по дисциплине (модулю) в форме Защиты курсового проекта Не предусмотрено учебным планом.

7.2.4. Описание шкалы и критериев оценивания для проведения промежуточной аттестации обучающихся по дисциплине (модулю) в форме Зачета

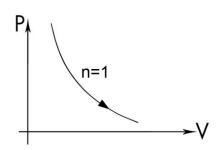
Код показа-	Оценка		
теля оцени- вания	Не зачтено	Зачтено	
31	части программного материала, допускает существенные ошибки, не знает ос-	Теоретическое содержание курса освоено полностью, необходимые практические компетенции в основном сформированы, знает основные законы тепломассообмена и технической термодинамики	
У1	ми выполняет практические работы, необходимые практические компетенции не сформированы, не умеет применять методы математического анализа и мо-	Обучающийся правильно применяет теоретические положения при решении практических вопросов и задач, владеет необходимыми навыками и приемами их выполнения, умеет применять методы математического анализа и моделирования для решения задач по теплотехнике	
H1	граммой обучения учебных заданий не выполнено, качество их выполнения	-	

7.3. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

7.3.1. Текущий контроль

Лабораторных работ №1, 2

- 1. Схема установки. Методика измерений. Основная схема расчета.
- 2. Изображение исследуемых процессов в і-d-диаграмме (к работе №2).
- 3. Размерности основных величин. Полученные результаты.
- 4. Теплоемкость массовая, объемная, молярная. Истинная и средняя. Теплоемкость в изобарном и изохорном, в политропном процессах.
- 5. Влажный воздух уравнение состояния, газовая постоянная, относительная влажность, влагосодержание, энтальпия.
- 6. Принципы построения диаграммы «энтальпия-влагосодержание».
- 7. Определение влажности воздуха по температурам сухого и мокрого термометров.
- 8. Температура точки росы, температура мокрого термометра.
- 9. Расчет процессов нагревание и сушки с использованием i-d-диаграммы.


Для защиты лабораторных работ № 3, 4

- 1. Схема установки. Методика измерений.
- 2. Основная схема расчета (по экспериментальным данным и с использованием критериев подобия).
- Полученные результаты. Размерности основных величин. 3.
- 4. Критерии подобия для свободной и вынужденной конвекции.
- 5. Порядок величин коэффициента теплоотдачи для свободной и вынужденной конвекции в газах и жилкостях.
- Термическое сопротивление теплопроводности и термическое сопротивление теп-6. лоотдачи плоской и цилиндрической стенок.
- 7. Определение коэффициента теплопередачи для плоской и цилиндрической стенки.
- Основные уравнения конструктивного расчета рекуперативных теплообменников. 8.
- 9. Закон Ньютона-Рихмана, Стефана-Больцмана.

Вариант задания контрольного опроса по теме «Техническая термодинамика»

ВАРИАНТ 1

- 1. Основные термодинамические параметры
- 2. І закон термодинамики для изохорного процесса.
- 3. Определить плотность углекислого газа при н.ф.у.
- 4. Изобразить в PV- и TS-координатах процесс изобарного сжатия
- 5. Какой процесс изображен в данных координатах?

Вариант задания контрольного опроса по теме «Основы теории теплообмена»

ВАРИАНТ 3

Укажите основные способы переноса теплоты:

A- теплопроводность, B- теплоотдача, C- теплопередача, D- конвекция, Eизлучение:

- **1**. A, B, C; **2**. C, D, E; **3**. D, E, A; **4**. A, B, C, D, E.

Какое из выражений является записью закона Ньютона-Рихмана:

- 1. $q = \alpha (t_{x} t_{c});$ 2. $q = \alpha (t_{x1} t_{x2});$ 3. $q = -\lambda \text{ grad } t,$ 4. $q = -\lambda (t_{c1} t_{c2}).$

Какое из определений соответствует процессу переноса теплоты теплопроводностью?

- Перенос теплоты при перемещении макроскопических частей жидкости (молей) 1. из области с более высокой температурой в область с более низкой температурой;
- 2. Перенос теплоты с помощью электромагнитных волн;
- 3. Перенос теплоты при перемещении микрочастиц вещества;
- 4. Перенос теплоты между теплоносителями, разделенными твердой стенкой.

Плоская стальная стенка теплообменника толщиной 2 мм, теплопроводность которой λ = 40 Вт/мК, омывается с одной стороны дымовыми газами (α_1 = 50 Вт/м 2 K), с другой – кипящей водой (α_2 = 20 000 Вт/м 2 K).

Укажите наиболее эффективный способ интенсификации теплопередачи:

- 1. уменьшить толщину стенки;
- 2. заменить стальную стенку на медную;
- **3.** увеличить коэффициент теплоотдачи к кипящей воде;
- **4.** увеличить коэффициент теплоотдачи от газов к стенке.

Укажите выражение для линейного коэффициента теплопередачи

$$\frac{\frac{1}{1}}{\frac{1}{\pi\alpha_{1}} + \frac{d_{1}}{2\pi\lambda} \ln \frac{d_{2}}{d_{1}} + \frac{d_{1}}{\pi d_{2}\alpha_{2}}}$$

$$\frac{1}{\pi d_{1}\alpha_{1}} + \frac{1}{2\pi\lambda} \ln \frac{d_{2}}{d_{1}} + \frac{1}{\pi d_{2}\alpha_{2}}$$

$$\frac{1}{\alpha_{1}} + \sum_{i=1}^{n} \frac{\delta_{i}}{\lambda_{i}} + \frac{1}{\alpha_{2}}$$

$$\frac{1}{\pi d_{1}\alpha_{1}} + \frac{1}{2\pi\lambda} \ln \frac{d_{2}}{d_{1}} + \frac{1}{\pi d_{2}\alpha_{2}}$$

$$\frac{1}{\pi d_{1}\alpha_{1}} + \frac{1}{2\pi\lambda} \ln \frac{d_{2}}{d_{1}} + \frac{1}{\pi d_{2}\alpha_{2}}$$

$$\frac{1}{\pi d_{1}\alpha_{1}} + \frac{1}{2\pi\lambda} \ln \frac{d_{2}}{d_{1}} + \frac{1}{\pi d_{2}\alpha_{2}}$$

7.3.2. Промежуточная аттестация

Вопросы для промежуточной аттестации.

- 1. Термодинамические параметры. Уравнение Менделеева-Клапейрона. Нормальные физические условия.
- 2. Основные процессы изменения состояния идеального газа. Определение теплоты, работы, изменения внутренней энергии.
- 3. Теплоемкость массовая, объемная, молярная. Средняя теплоемкость. Теплоемкость в изобарном и изохорном процессах.
- 4. І закон термодинамики. Формулировка. Аналитическое выражение.
- 5. Цикл Карно. Термический КПД цикла Карно.
- 6. Термодинамические параметры влажного воздуха. Относительная влажность, влагосодержание, температура мокрого термометра, температура точки росы. І-d диаграмма влажного воздуха.
- 7. Смесь идеальных газов. Определение парциального давления компонентов, молекулярной массы и газовой постоянной смеси.
- 8. Циклы ДВС. Сравнение циклов Дизеля, Отто, Тринклера.
- 9. Компрессор. Индикаторная диаграмма одно- и многоступенчатого компрессора. Определение удельной теплоты и работы.
- 10. Виды теплообмена. Основные положения.
- 11. Теплопроводность. Закон Фурье. Коэффициент теплопроводности. Конвективный теплообмен. 3-н Ньютона-Рихмана. Коэффициент теплоотдачи.
- 12. Теплопроводность плоской стенки. Теплопередача через плоскую стенку
- 13. Теплопроводность цилиндрической стенки. Теплопередача через цилиндрическую стенку.
- 14. Критический диаметр изоляции. Рациональный выбор тепловой изоляции.
- 15. Оребрение поверхностей. Основные закономерности.
- 16. Теория подобия. Основные понятия. 3 теоремы подобия.
- 17. Основные критерии подобия (Nu, Re, Pr, Gr). Физический смысл.

- 18. Конвективный теплообмен. Система дифференциальных уравнений. Условия однозначности. Граничные условия I, II, III рода.
- 19. Конвективная теплоотдача. Динамический и тепловой погранслой.
- 20. Свободная и вынужденная конвекция. Основные критериальные зависимости

7.4. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетениий

Процедура промежуточной аттестации проходит в соответствии с Положением о текущем контроле и промежуточной аттестации обучающихся в НИУ МГСУ.

- Во время аттестационных испытаний обучающиеся могут пользоваться программой учебной дисциплины, а также с разрешения преподавателя справочной и нормативной литературой, калькуляторами.
- Время подготовки ответа при сдаче зачета/экзамена в устной форме должно составлять не менее 40 минут (по желанию обучающегося ответ может быть досрочным). Время ответа не более 15 минут.
- Экзаменатору предоставляется право задавать обучающимся дополнительные вопросы в рамках программы дисциплины текущего семестра, а также, помимо теоретических вопросов, давать задачи, которые изучались на практических занятиях.
- Оценка результатов устного аттестационного испытания объявляется обучающимся в день его проведения

8. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины (модуля)

	освоения днеципанны (модуля)						
№	Наименование дис-	Автор, название, место издания, изда-	Количество	Число			
Π/Π	циплины (модуля) в	тельство, год издания учебной и учебно-	экземпляров	обучающихся,			
	соответствии с	методической литературы,	печатных	одновременно			
	учебным планом	количество страниц	изданий	изучающих			
				дисциплину			
				(модуль)			
1	2	3	4	5			
Осн	овная литература:						
		НТБ					
1		Мирам А.О., Павленко В.А. Техническая	81	50			
	Теплотехника	термодинамика. Тепломассообмен.					
		Учебник М.: АСВ, 2011 г.					
		Мирам А.О., Павленко В.А. Теплооб-	30	50			
		менные аппараты. Учебное пособие.					
		- М.: МГСУ, 2011 г.					
		ЭБС АСВ					
Доп	олнительная литера	тура:					
		НТБ					
1	Теплотехника	Кушнырев В.И., Лебедев В.И., Павленко	291	200			
		В.А., Техническая термодинамика и теп-					
		лопередача . М.:Стройиздат, 1986					
		- •					
		ЭБС АСВ					

9. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» (далее – сеть «Интернет), необходимых для освоения дисциплины (модуля)

Наименование ресурса сети «Интернет»	Электронный адрес ресурса	
«Российское образование» - федеральный портал	http://www.edu.ru/index.php	
Научная электронная библиотека	http://elibrary.ru/defaultx.asp?	
Электронная библиотечная система IPRbooks	http://www.iprbookshop.ru/	
Федеральная университетская компьютерная сеть России	http://www.runnet.ru/	
Информационная система "Единое окно доступа к образовательным ресурсам"	http://window.edu.ru/	
Научно-технический журнал по строительству и архитектуре «Вестник МГСУ»	http://www.vestnikmgsu.ru/	
Научно-техническая библиотека МГСУ	http://www.mgsu.ru/resources/Biblioteka/	
раздел «Кафедры» на официальном сайте МГСУ	http://www.mgsu.ru/universityabout/Strukt ura/Kafedri/	

10. Методические указания для обучающихся по освоению дисциплины (модуля)

- 1. Написание конспекта лекций: кратко, схематично, последовательно фиксировать основные положения, выводы, формулировки, обобщения, помечать важные мысли, выделять ключевые слова, термины.
- 2. Определение вопросов, терминов, материала, который вызывает трудности, пометить и попытаться найти ответ в рекомендуемой литературе. Если самостоятельно не удается разобраться в материале, необходимо сформулировать вопрос и задать преподавателю на консультации, на практическом занятии.
- 3. Уделить внимание следующим понятиям (Гидростатика, Закон вязкого трения Ньютона, Общие законы и уравнения динамики жидкостей, Основы теории гидравлических сопротивлений, Предмет технической термодинамики и ее методы, Теплообмен в энергетике и строительстве).
- 4. Знакомство с основной и дополнительной литературой, включая справочные издания.
- 5. Ознакомиться со структурой и оформлением курсового проекта.
- 6. Работа с конспектом лекций, подготовка ответов к контрольным вопросам. При подготовке к экзамену (зачету) необходимо ориентироваться на конспекты лекций, рекомендуемую литературу.

11. Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине (модулю), включая перечень программного обеспечения и информационных справочных систем (при необходимости)

11.1. Перечень информационных технологий, используемых при осуществлении образовательного процесса

Не предусмотрено.

11.2. Перечень программного обеспечения, используемого при осуществлении образовательного процесса

Не предусмотрено.

11.3. Перечень информационных справочных систем

Информационно-библиотечные системы

Наименование ИБС	Электронный адрес ресурса
Научная электронная библиотека	http://elibrary.ru/defaultx.asp?
Электронная библиотечная система IPRbooks	http://www.iprbookshop.ru/
Научно-техническая библиотека МГСУ	http://www.mgsu.ru/resources/Biblioteka/

12. Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине (модулю):

Учебные занятия по дисциплине «Теплотехника» проводятся в следующих оборудованных учебных кабинетах, оснащенных соответствующим оборудованием и программным обеспечением:

№ π/π	Вид учебного занятия 2	Наименование оборудования	№ и наименование оборудованных учебных кабинетов, объектов для проведения практических занятий	
1.	Лекция	Стационарные/мобильные (переносные) наборы демонстрационного оборудования	Аудитории/аудитория для проведения занятий лекционного типа в соответствии с перечнем аудиторного фонда	
2.	Лабораторные работы	Лабораторный стенд «Определение теплоемкости воздуха при атмосферном давлении» Лабораторный стенд «Процессы изменения состояния влажного воздуха» Лабораторный стенд «Определение теплопроводности наружного ограждения здания» Лабораторный стенд «Определение коэффициента теплоотдачи от горизонтальной трубы к воздуху» Лабораторный стенд «Исследование теплоотдачи конвекцией при вынужденном продольном омывании воздухом плоской поверхности (пластины)» Лабораторный стенд «Изучение процессов конвективной теплоотдачи при вынужденном движении воздуха в пучке труб» Лабораторный стенд «Определение коэффициента теплопередачи пароводяного теплообменного аппарата»	514г УЛБ, Лаборатория "Теплотехники". Лаборатория "Термодинамики и тепломассообмена"	

Программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта высшего образования с учетом рекомендаций и примерной основной профессиональной образовательной программой высшего образования по направлению 23.03.02 Наземные транспортно-технологические комплексы.