КЕРАМИЧЕСКИЕ ИЗДЕЛИЯ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторных работ

для студентов всех направлений подготовки

МОСКВА 2012
1. ОБЩИЕ СВЕДЕНИЯ О СТРОИТЕЛЬНОЙ КЕРАМИКЕ

Керамическими называют искусственные каменные материалы, получаемые из минерального сырья путем его формования и обжига при высоких температурах.

Керамические изделия находят широкое применение во многих отраслях народного хозяйства и в быту. В современном строительстве керамические изделия используют практически во всех конструктивных элементах зданий, а также для архитектурной отделки фасадов. При этом в наибольших объемах применяют стеновые изделия — керамические кирпичи и камень.

Основным сырьем для производства строительной керамики служат рыхлоземистые осадочные горные породы — глины и каолины. Глины разнообразны по минеральному составу и состоят из минералов — водных алюминосиликатов: каолинита $\text{Al}_2\text{O}_3\cdot2\text{SiO}_2\cdot2\text{H}_2\text{O}$ (это главный минерал), монтмориллонита $\text{Al}_2\text{O}_3\cdot4\text{SiO}_2\cdotn\text{H}_2\text{O}$, галлузита $\text{Al}_2\text{O}_3\cdot2\text{SiO}_2\cdot4\text{H}_2\text{O}$ и других, а также минеральных и органических примесей. Каолины состоят преимущественно из минерала белого цвета — каолинита с минимальным содержанием примесей. Они тугоплавки и после обжига сохраняют белый цвет.

Наряду с глинами и каолинами в технологии керамических изделий используют другое минеральное сырье, например, трепелы, диатомиты, а также чистые оксиды (оксидная или техническая керамика). Размеры глинистых частиц менее 0,005 мм; именно эти мельчайшие частицы пластичной формы придают глянцам высокую гидрофильность и пластичность. Кроме глинистых частиц в глине содержатся более крупные фракции: пылевидные - 0,005 - 0,16 мм и песчаные - 0,16 - 5,0 мм.

Примеси (кальцит, силик, полевые шпаты, кальцит, магнезит и др.), входящие в состав глин, уменьшают их пластичность. Наличие примесей известняка может явиться причиной появления так называемых "духов" и трещин в изделиях. Дело в том, что при обжиге глины CaCO_3, содержащийся в известняке, разлагается на оксид кальция и углекислый газ, а при последующей эксплуатации изделий оксид кальция гидратируется с увеличением объема.

Природные глины в чистом виде применяются редко, чаще - в смеси с добавками различного назначения. Основные виды добавок:
- отощающие - шамот, дегидратированная глина, шлаки, золь, кварцевый песок; вводятся для понижения пластичности и уменьшения усадки глины при сушке и обжиге;
- пластифицирующие - высокопластичные глины, бентониты, поверхностно-активные вещества; вводятся в тонкие глины для повышения пластичности сырьевой смеси;
- порообразующие, которые вводятся для повышения пористости и уменьшения теплопроводности керамического черепка. По механизму порообразования добавки делятся на диссоциирующие с выделением газа - молотые мед, доломит и выгорающие - древесные опилки, угольный порошок, торфяная пыль;
- плавки - полевые шпаты, железная руда, доломит, магнезит, тальк и др.; понижают температуру спекания глин.

Для улучшения внешнего вида, а также повышения стойкости к внешним воздействиям изделия могут покрываться декоративным слоем - глазурью или ангобом. Глазурь - стекловидное покрытие различного цвета, прозрачное или непрозрачное (глянчое). Сырьевую смесь в виде порошка или суспензии из кварцевого песка, каолина, полевого шпата, солей щелочных и щелочноземельных металлов наносят на изделие и закрепляют обжигом.

Ангоб - тонкий слой белокурущейся или цветной глины, наносимый на поверхность еще необожженного изделия. При обжиге образуется цветное покрытие с матовой поверхностью.

Производство керамических изделий включает следующие этапы: карьерные работы, механическую обработку глинистой массы, формование изделий, их сушку и обжиг. Добыча глин осуществляется в карьерах открытым способом. Добытая глина в течение 1-2 лет в замоченном состоянии вылеживается в карьере, где периодически замораживается и оттаивает. При этом разрушаются природные агрегаты глины и вследствие мелкие частицы, придающие глине пластичность. Механическая обработка глинистой массы производится с целью дальнейшего разрушения природной структуры глины, удаления или измельчения крупных включений, измельчения и перемешивания всех компонентов до получения однородной, удобоформуемой массы.

В зависимости от вида изготавляемой продукции и свойств сырья массу приготавливают пластическим, жестким, полусухим, сухим и шлакерным способами. Способ приготовления массы определяет и способ формования, и название в целом способа производства. Стеклянные керамические изделия изготавливают способом пластического формования (экструзии), реже - полусухим прессованием.

Способ пластического формования является наиболее простым, наименее металлоемким и поэтому наиболее распространенным. Исходные материалы смешивают с водой до получения смеси с влажностью от 18 до 22%. Применяются среднепластичные и умеренно пластичные глины с небольшим содержанием посторонних включений. Формование сырца производится на ленточном прессе.

Увлажненная и тщательно размазанная глинистая масса продавливается винтовым конвейером через решетку в вакуумную камеру пресса, где из нее удаляется воздух. Далее масса винтовым валом подается в конусную головку пресса, уплотняется и продавливается через формообразующую часть пресса - мундштук. Мундштук придает глиняной ленте, выходящей из пресса, определенную высоту и ширину. При получении пустотелых изделий в мундштуке устанавливаются керны, образующие каналы в выдавливаемой ленте.

Выходящая из пресса глиняная лента нарезается автоматическим устройством на отдельные изделия. Размер сырца несколько больше номинальных размеров изделия, так как в процессе последующей обработки глина претерпевает усадку, достигающую при данном способе производства 10-15%.

Сушка изделий с целью предотвращения растрескивания должна производиться так, чтобы скорость испарения воды с поверхности не превышала скорости ее миграции из внутренних слоев. Сушка сырца производится в туннельных и камерных сушильках до остаточного содержания влаги не более 5-7% во избежание неравномерной усадки и растрескивания при последующем обжиге.

Полусухой способ производства отличается от пластического тем, что глина с влажностью 6-7% измельчается в порошок, из которого на специальных прессах поштучно формуется кирпич-сырец. Такой сырец не требует сушки - его сразу после формования можно обжигать. Кирпич полусухого прессования имеет гладкие грани и значительно меньше дефектов, чем кирпич пластического формования, но он менее морозостоек. Кроме того, он получается более плотным, в связи с чем в нем делают несквозные пустоты (так называемый пистеновый кирпич). Относительно небольшой выпуск кирпича полусухого прессования объясняется сложностью прессов для формования сырца и их невысокой производительностью.
Наиболее ответственным этапом производства является обжиг. В процессе обжига формируется состав и структура керамического черепка, определяющие строительно-технические свойства: прочность, плотность, водоустойчивость, морозостойкость и др. Дефекты, возникающие при обжиге, являются необратимыми.

От ведения процесса обжига зависит расход топлива, электроэнергии, затраты труда и другие технико-экономические показатели. Суммарные затраты на обжиг составляют 35...40% от себестоимости товарной продукции.

В процессе обжига глина претерпевает глубокие физико-химические изменения. Сначала испаряется свободная вода (до 200°C), затем выгорают органические примеси (300-400°C). При температуре 500-600°C из глинистых минералов удаляется химически связанная вода: так из каолинита образуется безводный метакаолинит Al₂O₃·2SiO₂, который при 700-800°C разлагается на отдельные оксиды (образуется так называемый твердый раствор). С повышением температуры до 900°C и выше SiO₂ и Al₂O₃ вновь соединяются друг с другом, но в других соотношениях, образуя новые искусственные минералы: неустойчивый силицинат Al₂O₃·3SiO₂ и кристаллический муллит 3Al₂O₃·2SiO₂, интенсивное образование которого происходит в интервале температур 1000-1200°C. Муллит придает обожженному керамическому черепку водоустойчивость, прочность, термическую стойкость. С его образованием глина необратимо переходит в камнеподобное состояние. Вместе с образованием муллита легкоплавкие составляющие глины переходят в расплав, который скрепляет кристаллы муллита, цементирует и упрочняет керамический черепок.

Расплавление легкоплавких составляющих глины при обжиге сопровождается облипением частиц и, соответственно, уменьшением размеров и объема изделий. Это явление называется огневой усадкой. В зависимости от вида глины она составляет от 2 до 8 % и тем больше, чем выше температура обжига. Полная усадка равна сумме воздушной (возникает при сушке за счет испарения свободной воды) и огневой. Данные об усадке учитываются при формировании изделий.

Свойство глины уплотняться при обжиге и образовывать камнеподобный черепок называется спекаемостью. Интервал между температурой начала спекания и температурой, при которой появляются первые признаки пережога, называется интервалом спекания. Чем
2. КЕРАМИЧЕСКИЕ КИРПИЧ И КАМЕНЬ

Кирпич и камень, включая крупноформатные (ГОСТ 530-2007), представляют собой мелкоштучные керамические изделия, предназначенные для кладки и облицовки каменных и армокаменных конструкций — несущих и самонесущих стен, фундаментов, вентиляционных каналов и т.п.

2.1. Классификация и основные размеры изделий

Керамические кирпич и камень (в дальнейшем изделия), как правило, имеют форму прямоугольного параллелепипеда (рис. 1). Для граней изделий приняты следующие названия. Рабочая грань изделия, расположенная параллельно основанию кладки, назвывается постель. Ложок и тычок - соответственно большая и меньшая грани, расположенные перпендикулярно постели.

Рис. 1. Керамическое изделие, как элемент кладки

Камень отличается от кирпича большими размерами, а крупноформатный камень кроме того имеет на двух противоположных боковых гранях гребни и соответствующие им пазы для скрепления изделий в кладке в вертикальном направлении без раствора - пазогребневая система (см. рис. 12, цветная вклейка).

Номинальные размеры основных разновидностей изделий и обозначения их вида и размера приведены в табл. 1.

В таблице обозначение размера «1 НФ» означает «кирпич нормального формата» объемом 1950 см³ (25x12x6,5 см). Соответственно, для других изделий обозначение размера устанавливается путем деления их объема, вычисленного по номинальным размерам в см, на 1950 с округлением результата до 0,1. Например, объем утолщенного кирпича по номинальным размерам составляет 2640 см³ (25x12x8,8 см). Результат деления его на 1950 = 1,35, следовательно, обозначение размера 1,4НФ.

По назначению изделия подразделяются на рядовые и лицевые. Главное требование к рядовым изделиям — обеспечить эксплуатационные характеристики кладки: сопротивление сжатию, приведенное сопротивление теплопередаче и др. Рядовые изделия выпускаются с гладкой или рельефной поверхностью боковых граней. Рельефная поверхность обеспечивает лучшее сцепление со слоем раствора (см. рис. 1 и 2, цветная вклейка).

Таблица 1

<table>
<thead>
<tr>
<th>Вид изделия</th>
<th>Обозначение вида</th>
<th>Номинальные размеры, мм</th>
<th>Обозначение размера</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Длина</td>
<td>Ширина</td>
</tr>
<tr>
<td>Кирипич одинарный</td>
<td>КО</td>
<td>250</td>
<td>120</td>
</tr>
<tr>
<td>Кирипич «Европ»</td>
<td>КЕ</td>
<td>250</td>
<td>85</td>
</tr>
<tr>
<td>Кирипич утолщенный</td>
<td>КУ</td>
<td>250</td>
<td>120</td>
</tr>
<tr>
<td>Кирипич модульный одинарный</td>
<td>КМ</td>
<td>288</td>
<td>138</td>
</tr>
<tr>
<td>Кирипич утолщенный с горизонтальными пустотами</td>
<td>КУГ</td>
<td>250</td>
<td>120</td>
</tr>
<tr>
<td>Камень</td>
<td>К</td>
<td>250</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>288</td>
<td>138</td>
</tr>
<tr>
<td>Камень с горизонтальными пустотами</td>
<td>КГ</td>
<td>250</td>
<td>200</td>
</tr>
<tr>
<td>Камень крупноформатный</td>
<td>КК</td>
<td>510</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>380</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td></td>
<td>510</td>
<td>250</td>
</tr>
</tbody>
</table>

Примечание: допускается изготовление изделий других номинальных размеров; при этом предельные отклонения размеров не должны превышать значений, приведенных в разделе 2.3.
Лицевые изделия обеспечивают не только эксплуатационные характеристики кладки, но и выполняют декоративные функции. Лицевые изделия имеют не менее двух (чаще трех) лицевых граней - ложковую и тычковую (или ложковую и две тычковые), отличающихся более высоким качеством поверхности.

Лицевые изделия по способу получения лицевой поверхности бывают:
- неокрашенные с гладкой или рельефной поверхностью естественного цвета или объемно окрашенные (см. рис. 3-10, цветная вклейка);
- с поверхностью, офактурированной токарением, ангибированием, глазурованием или иным способом.

Для снижения стоимости лицевых керамических изделий (примерно на 20\%) и затрат на транспортировку (примерно на 30\%) выпускается кирпич «Евро» шириной 85 мм (см. рис. 8 и 9, цветная вклейка).

Для кладки столбов, арок и других сложных по форме конструкций к соответствующим техническим условиям производят фасонный лицевой одинарный и угловой кирпичи различной конфигурации (см. рис. 10, цветная вклейка). Кирпич бывает полнотелым и пустотелым, а камень только пустотелым. Полнотелым считается кирпич без пустот или с технологическими пустотами, объем которых не превышает 13% объема изделия (см. рис. 1 и 2, цветная вклейка).

Пустотелые изделия (пустотность – 25-53\%) изготавливают с целью уменьшения их массы и снижения теплопроводности, а также для обеспечения более равномерных сушки и обжига изделий и, как следствие, большей точности размеров и отсутствия трещин.

Пустоты различной формы и размеров могут располагаться в изделиях перпендикулярно (вертикальные) или параллельно (горизонтальные) постели. Крупноформатный камень имеет также пустоты для захвата при укладке (см. рис. 12, цветная вклейка).

Толщина наружных стенок пустотелого кирпича и камня должна быть не менее 12 мм, крупноформатного камня - не менее 10 мм. Диаметр вертикальных цилиндрических и размер стороны квадратных пустот должны быть не более 20 мм, а ширина щелевидных пустот - не более 16 мм.

Для повышения теплотехнической эффективности стеновых керамических изделий (в первую очередь крупноформатного камня) при их производстве в сыровую массу вводят добавки: древесные опилки, измельченную бумагу, полиэтиленовую пленку, которые при обжиге выгорают, образуя в керамическом черепке микропоры. Такие изделия принято называть поризованными.

Марки по прочности полнотелого кирпича, кирпича и камня с вертикальными пустотами: M100, M125, M150, M175, M200, M250, M300, крупноформатного камня - M35, M50, M75, M100, M125, M150, M175, M200, M250, M300, кирпича и камня с горизонтальными пустотами - M25, M35, M50, M75, M100.

В зависимости от средней плотности изделия подразделяют на классы: 0,8; 1,0; 1,2; 1,4; 2,0.

В зависимости от класса средней плотности изделия делят на группы по теплотехническим характеристикам (табл. 2). Теплотехническую эффективность оценивают теплопроводностью кладки в суходом состоянии с минимально достаточным количеством кладочного раствора.

<p>| Таблица 2 |
|-----------------|-----------------|-----------------|</p>
<table>
<thead>
<tr>
<th>Группы изделий по теплотехническим характеристикам</th>
<th>Класс средней плотности изделия</th>
<th>Группы изделий по теплотехническим характеристикам</th>
<th>Теплопроводность кладки в суходом состоянии, Вт/(м²·К)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,8</td>
<td>Высокой эффективности</td>
<td>До 0,20</td>
<td></td>
</tr>
<tr>
<td>1,0</td>
<td>Повышенной эффективности</td>
<td>Свыше 0,20 до 0,24</td>
<td></td>
</tr>
<tr>
<td>1,2</td>
<td>Эффективные</td>
<td>Свыше 0,24 до 0,36</td>
<td></td>
</tr>
<tr>
<td>1,4</td>
<td>Условно-эффективные</td>
<td>Свыше 0,36 до 0,46</td>
<td></td>
</tr>
<tr>
<td>2,0</td>
<td>Обыкновенные (малоэффективные)</td>
<td>Свыше 0,46</td>
<td></td>
</tr>
</tbody>
</table>

2.2. Условные обозначения

Условное обозначение керамических изделий по ГОСТ 530 включает: название вида изделия, его обозначение (табл. 1), букву Р - для рядовых, Л - для лицевых изделий, обозначение По - для полнотелого кирпича, Пу - для пустотелого, обозначение размера (табл. 1), марку по прочности, класс средней плотности, марку по морозостойкости и обозначение стандарта. Допускается для более полной характеристики изделий вводить в условное обозначение дополнительную информацию.
Примеры условных обозначений изделий

Кирпич рядовой полнотелый, оцинкенный, размера 1НФ, марки по прочности М175, класса средней плотности 2,0, марки по морозостойкости F50: Кирпич КОРП 1НФ/175/2,0/50/ГОСТ 530-2007

Кирпич «Европа» лицевой, пустотелый, размера 0,7НФ, марки по прочности М150, класса средней плотности 1,4, марки по морозостойкости F100: Кирпич КЕЛПУ 0,7НФ/150/1,4/100/ГОСТ 530-2007

Кирпич лицевой, пустотелый, оцинкенный, размера 1НФ, марки по прочности М125, класса средней плотности 1,2, марки по морозостойкости F50: Кирпич КОЛПУ 1НФ/125/1,2/50/ГОСТ 530-2007

Камень рядовой, размера 2,1НФ, марки по прочности М100, класса средней плотности 1,0, марки по морозостойкости F35: Камень КР 2,1НФ/100/1,0/35/ГОСТ 530-2007

Камень крупноформатный рядовой, размера 10,7НФ, марки по прочности М75, класса средней плотности 0,8, марки по морозостойкости F25: Камень ККР 10,7НФ/75/0,8/25/ГОСТ 530-2007

2.3. Технические требования

Технические требования в соответствии с ГОСТ 530-2007 включают требования к внешнему виду и техническим характеристикам изделий, сырью и материалам, а также маркировке и упаковке.

Внешний вид. Предельные отклонения размеров от номинальных значений не должны превышать, мм:

- по длине:
 - кирпича и камня (кроме крупноформатного) ±4,
 - крупноформатного камня ±10;
- по ширине:
 - кирпича и камня (кроме крупноформатного) ±3,
 - крупноформатного камня ±5;
- по толщине:
 - кирпича лицевого ±2,
 - кирпича рядового ±3,
 - камня, в т.ч. крупноформатного ±4.

Отклонение от перпендикулярности смежных граней допускается не более: для кирпича и камня - 3 мм, для крупноформатного камня - 1,4% длины любой грани.

Отклонение от плоскостности граней изделий более 3 мм не допускается.

Лицевые изделия не должны иметь отколов, вызванные карбонатными или иными включениями в сыре. На рядовых изделиях допускаются отколов общей площадью не более 1,0 см².

На лицевых изделиях не допускаются ворсистые, представляющие собой водоразтворимые соли, выходящие на поверхность изделия при контакте с влагой.

Прочие дефекты внешнего вида изделий, размеры и число которых превышают значения, указанные в табл. 3, не допускаются.

<table>
<thead>
<tr>
<th>Дефекты внешнего вида изделий</th>
<th>Таблица 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Вид дефекта</td>
<td>Лицевые изделия</td>
</tr>
<tr>
<td>Отбитости углов глубиной более 15 мм, шт.</td>
<td>не допускаются</td>
</tr>
<tr>
<td>Отбитости углов глубиной от 3 до 15 мм, шт.</td>
<td>1</td>
</tr>
<tr>
<td>Отбитости ребер глубиной более 3 мм и длиной более 15 мм, шт.</td>
<td>не допускаются</td>
</tr>
<tr>
<td>Отбитости ребер глубиной не более 3 мм и длиной от 3 до 15 мм, шт.</td>
<td>1</td>
</tr>
<tr>
<td>Трешины, шт.</td>
<td>не допускаются</td>
</tr>
</tbody>
</table>

Примечания:
1. Трешины в межпластовых перегородках не являются дефектом.
2. Отбитости углов глубиной менее 3 мм и отбитости ребер длиной и глубиной менее 3 мм и трещины с шириной раскрытия не более 0,5 мм не являются браковочными признаками.
3. Для лицевых изделий указаны дефекты лицевых граней.

У рядовых и лицевых изделий допускаются черная сердцевина и контактные пятна на поверхности (нелицевой). Черная сердцевина обусловлена образованием в процессе обжига изделия закиси железа. Контактное пятно — это участок поверхности изделия, отличный...
по цвету, возникающий в процессе сушки или обжига и не влияющий на характеристики изделия.

В партии изделий допускается наличие половиня более 5 %. Половинка — это изделия, имеющие сквозные трещины, или две части, образовавшиеся в результате рассыпания изделия. Сквозной считается трещина, проходящая через всю толщину изделия и имеющая протяженность в половину или более ширины изделия.

Марку кирпича по прочности устанавливают по пределу прочности при сжатии и изгибе, а камня - по пределу прочности при сжатии. Пределы прочности изделий должны быть не менее значений, указанных в табл. 4. Марка определяется по среднему пределу прочности пяти образцов с учетом наименьшего значения для отдельного образца.

Таблица 4

<table>
<thead>
<tr>
<th>Марка изделий</th>
<th>Средний для пяти образцов</th>
<th>Наименьший для отдельного образца</th>
<th>Предел прочности при сжатии, МПа</th>
<th>Наименьший для отдельного образца</th>
<th>Предел прочности при изгибе, МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>M300</td>
<td>30,0</td>
<td>25,0</td>
<td>4,4/3,4</td>
<td>2,2/1,7</td>
<td>2,9</td>
</tr>
<tr>
<td>M250</td>
<td>25,0</td>
<td>20,0</td>
<td>3,9/2,9</td>
<td>2,0/1,5</td>
<td>2,5</td>
</tr>
<tr>
<td>M200</td>
<td>20,0</td>
<td>17,5</td>
<td>3,4/2,5</td>
<td>1,7/1,3</td>
<td>2,3</td>
</tr>
<tr>
<td>M175</td>
<td>17,5</td>
<td>15,0</td>
<td>3,1/2,3</td>
<td>1,5/1,1</td>
<td>2,1</td>
</tr>
<tr>
<td>M150</td>
<td>15,0</td>
<td>12,5</td>
<td>2,8/2,1</td>
<td>1,4/1,0</td>
<td>1,8</td>
</tr>
<tr>
<td>M125</td>
<td>12,5</td>
<td>10,0</td>
<td>2,5/1,9</td>
<td>1,2/0,9</td>
<td>1,6</td>
</tr>
<tr>
<td>M100</td>
<td>10,0</td>
<td>7,5</td>
<td>2,2/1,6</td>
<td>1,1/0,8</td>
<td>1,4</td>
</tr>
<tr>
<td>M753</td>
<td>7,5</td>
<td>5,0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M503</td>
<td>5,0</td>
<td>3,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>M353</td>
<td>3,5</td>
<td>2,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Примечания: 1)Над чертой — значения предела прочности при изгибе для одинарного и «евро» пустотелого кирпичей; под чертой — то же для пустотелого кирпича.
2)Марки только крупноформатного кирпича.

Средняя плотность изделий в зависимости от класса средней плотности должна соответствовать значениям, приведенным в табл. 5.

<table>
<thead>
<tr>
<th>Классы средней плотности изделий</th>
<th>Средняя плотность, кг/м³</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,8</td>
<td>До 800</td>
</tr>
<tr>
<td>1,0</td>
<td>801-1000</td>
</tr>
<tr>
<td>1,2</td>
<td>1001-1200</td>
</tr>
<tr>
<td>1,4</td>
<td>1201-1400</td>
</tr>
<tr>
<td>2,0</td>
<td>Св. 1400</td>
</tr>
</tbody>
</table>

Водопоглощение рядовых изделий должно быть не менее 6,0 %, лицевых - не менее 6,0 % и не более 14,0 %. Для изделий, изготовленных из трепелов и диатомитов, допускается водопоглощение не более 28 %. Кирпич и камень в зависимости от марки по морозостойкости должны выдерживать без каких-либо видимых признаков разрушения (растаскивание, щелущение, вкрапливание, отколы) не менее 25; 35; 50; 75 или 100 циклов попеременного замораживания и оттаивания в насыщенном водой состоянии.

Для лицевых изделий марка по морозостойкости должна быть не ниже F50. Допускается по согласованию с потребителем поставлять лицевые изделия марки по морозостойкости F35. Марка по морозостойкости изделий, используемых для возведения дымовых труб, колосников и стен подвалов, должна быть не ниже F50.

Удельная эффективная активность естественных радиоактивных элементов в изделиях должна быть не более 370 Бк/кг.

2.4. Контроль качества изделий

Качество керамических изделий на производстве обеспечивают входным контролем сырья и материалов, операционным технологическим контролем и приемочным контролем готовых изделий.

Приемочный контроль включает в себя приемосдаточные и периодические испытания. Продукцию принимают партиями, состоящими из одинаковых изделий. Объем партии устанавливают в количестве, не превышающем суточной выработке одной печи. Каждая партия проходит приемосдаточные испытания: оценку внешнего вида, средней плотности, прочности при сжатии и изгибе.
Для оценки внешнего вида методом случайного отбора из разных мест партии отбирают 35 кирпичей или 25 камней. Эти же образцы затем используют для других испытаний. Среднюю плотность контролируют на 5-ти изделиях, прочность при сжатии — на 10-ти кирпичах или 5-ти камнях, а при изгибе — на 5-ти образцах.

Периодические испытания включают определение наличия известковых включений (1 раз в две недели), высолов (1 раз в месяц), водопоглощения (1 раз в месяц) и морозостойкости (1 раз в квартал). Для всех периодических испытаний отбирают по 5 образцов. Результаты периодических испытаний распространяются на все партии изделий, выпущенных до проведения следующих периодических испытаний.

Партии не принимают, если при проверке размеров и правильности формы два и более из отобранных от партии изделий не соответствуют стандартным требованиям. Если будет установлено несоответствие изделий стандарту хотя бы по одному из показателей (кроме внешнего вида и морозостойкости), то по этому показателю проводят повторные испытания удвоенного количества образцов из той же партии. При неудовлетворительных результатах повторных испытаний партия приемке не подлежит.

Удельную эффективную активность естественных радионуклидов контролируют при входном контроле по данным предприятий-поставщиков сырьевых материалов.

Предприятие-изготовитель должно сопровождать партии изделий документом о качестве, в котором указывается наименование и условное обозначение изделия, номер партии, марка по прочности, класс средней плотности, марка по морозостойкости, водопоглощение, группа по теплотехнической эффективности, удельная эффективная активность естественных радионуклидов, способ изготовления изделий.

2.5. Методы испытаний

2.5.1. Оценка внешнего вида

Размеры изделий, толщину наружных стенок, диаметр цилиндрических пустот, размеры квадратных и шестигранных пустот, площадь отколов и длину отбитостей ребер измеряют металлической линейкой или штангенциркулем. Погрешность измерения ±1 мм. Длину и ширину каждого изделия измеряют в трех местах.
на двух ребрах и середине постели, толщину - на двух ребрах и середине тылька. За результат измерений принимают среднее арифметическое отдельных измерений.

Ширину раскрытия трещин определяют при помощи измерительной лупы с погрешностью измерения ±0,1 мм.

Глубину отбитости углов и ребер измеряют штангенглубиномером или с помощью угольника и линейки по перпендикуляру от вершины угла или ребра, образованного угольником, до поврежденной поверхности. Погрешность измерения ±1 мм.

Отклонение от перпендикулярности граней определяют, прикладывая уголник к смежным граням изделия и измеряя металлической линейкой наибольший зазор между угольником и гранью с погрешностью измерения ±1 мм. За результат измерений принимают наибольший из всех полученных результатов.

Отклонение от плоскости изделия определяют, прикладывая одну сторону металлического уголника к ребру изделия, а другую - вдоль каждой диагонали грани и измеряя шупом или линейкой наибольший зазор между поверхностью и ребром уголника. Погрешность измерения ±1 мм. За результат измерения принимают наибольший из всех полученных результатов.

Наличие известковых включений оценивают осмотром изделий после пропаривания. Образцы, не подвергавшиеся ранее воздействию влаги, укладывают на решетку, помещенную в сосуд с крышкой. Налитую под решетку воду нагревают до кипения и кипятят в течение 1 ч. Затем образцы охлаждают в закрытом сосуде в течение 4 ч, после чего их проверяют на соответствие стандартным требованиям.

Наличие высолов контролируются погружая половинки изделия отбивным топором в сосуд, заполненный на 1-2 см дистилированной водой, и выдерживая в течение 7 сут (уровень воды в сосуде поддерживает постоянным). После этого образец высушивают в сушильном шкафу при температуре 100 °C до постоянной массы и сравнивают со второй половинкой образца, не подвергавшейся испытанию.

2.5.2. Определение прочности при сжатии и изгибе

Предел прочности при сжатии кирпича и камня и кирпича при изгибе определяют в соответствии с ГОСТ 8462. Испытывают об-
разцы, выдержанные не менее 3-х суток в помещении при темпера-
туре (20±5) °C или подсушенные в течение 4 ч при температуре (10±5) °C.

Предел прочности при сжатии кирпича определяют на образцах,
составляющих из двух целых кирпичей или из двух парных половинок,
а предел прочности при сжатии камня и крупноформатного камня —
на целом изделии.

Кирпич делают на половинки распиливанием или раскалыванием.
Целые кирпичи или половинки укладывают постелями друг на дру-
га. Половинки размещают поверхностями раскола (распила) в про-
тивоположные стороны. Допускается использовать половинки, по-
лученные при испытании на изгиб.

Опорные грани (постель) у кирпича и камня пластического
формования могут иметь отклонения от плоскостности и другие де-
фекты поверхности, что не обеспечивает равномерного распределе-
ния нагрузки по поверхности образца. Поэтому при подготовке об-
разцов к испытаниям производят выравнивание опорных поверхно-
стей.

Образцы кирпича для испытания на сжатие изготавливают в
следующей последовательности. Готовят раствор состава 1:1 при
В/Ц=0,40-0,42 из цемента марки 400 (можно использовать порт-
ландцемент, портландцемент с минеральными добавками и шлако-
портландцемент) и кварцевого песка, просеянного через сито с раз-
мером ячеек 1,25 мм. Кирпичи или их половинки полностью погру-
жают в воду на 1 мин. Затем на горизонтально установленную пла-
стину (металлическую или стеклянную) укладывают лист бумаги,
слой раствора толщиной не более 5 мм и первый кирпич или поло-
винку, затем опять слой раствора и второй кирпич или половину.

Излишки раствора удаляют, а края бумаги загибают на боковые
поверхности образца. В таком положении образец выдерживают 30
мин. Затем образец переворачивают и выравнивают другую опор-
ную поверхность. Отклонение от параллельности выровненных
опорных поверхностей образца, определяемое по максимальной раз-
nosti любых двух его высот, не должно превышать 2 мм.

Для твердения цементного раствора образцы выдерживают трое
суток в помещении при температуре (20±5) °C и относительной
влажности воздуха 60-80 %.

Допускается выравнивание опорных поверхностей образцов
шлифованием, гипсовым раствором и применением пластина толщи-
У образцов перед испытанием измеряют с погрешностью ±1 мм толщину и ширину в месте приложения нагрузки. Размеры вычисляют как среднее арифметическое результатов измерений двух средних линий на противоположных гранях образца.

При испытаниях на изгиб используют специальное приспособление, фиксируемое на нижней плите пресса, и состоящее из подвижного и неподвижного опорных катков и катка для передачи нагрузки от пресса на кирпич. Диаметр катков должен быть не более 20 мм, длина катка – не менее ширины кирпича. Нагрузку прикладывают в середине пролета и равномерно распределяют по ширине образца (рис. 3). Нагрузка должна возрастать со скоростью, обеспечивающей разрушение образца через 20-60 с после начала испытания.

Рис. 3. Схема испытания образца кирпича на изгиб
1 – образец;
2 – полоски из цементно-песчаного раствора;
3 – подвижный опорный каток;
4 – неподвижная опора;
5 – каток для передачи нагрузки от пресса на кирпич

Предел прочности при изгибе \(R_u \), МПа вычисляют по формуле:

\[
R_u = \frac{3P \cdot l}{2 \cdot b \cdot h^2},
\]
где \(P \) – наибольшая нагрузка, зафиксированная при испытании, кН; \(l \) – расстояние между осями опор, см; \(b \) и \(h \) – соответственно ширина и толщина образца в середине пролета без выравнивающего слоя, см.

Предел прочности при изгибе вычисляют с точностью 0,05 МПа как среднее арифметическое отдельных результатов испытания. При вычислении \(R_u \) не учитывают результаты, отличные от среднего значения более, чем на 50%.

2.5.3. Определение средней плотности, водопоглощения и морозостойкости

Среднюю плотность определяют по ГОСТ 7025 на пяти целях образцах кирпича и камня по объему бруто, т.е. без вычета пустот. Объем образцов (\(V_c \)) вычисляют по их геометрическим размерам, измеренным с погрешностью не более 1 мм. Обмеренные образцы высушивают до постоянной массы (\(m_l \)) и взвешивают с погрешностью не более 5 г. Для высушивания применяют электрощкаф с автоматической регулировкой температуры в пределах 100-110°C.

Среднюю плотность \(\rho_m \) образца вычисляют по формуле:

\[
\rho_m = \frac{m_c}{V_c}
\]
(2.3)

При невозможности высыхания целого изделия среднюю плотность находит следующим образом. Определяют массу целого изделия в состоянии естественной влажности и его объем. Затем от каждого изделия откальвывают по два образца массой не менее 100 г каждый. Отобранные образцы взвешивают и высушивают до постоянной массы.

Среднюю плотность каждого изделия вычисляют по формуле:

\[
\rho_m = \frac{m_l \cdot m_{kl}}{V_c \cdot m_{kl}}
\]
(2.4)

где \(m_{kl} \) – масса целого изделия в состоянии естественной влажности, г; \(V_c \) – объем целого изделия, см³; \(m_{kl} \) – масса отколового образца, высушенного до постоянной массы, г; \(m_{kl} \) – то же, в состоянии естественной влажности, г.

За значение средней плотности партии изделий принимают среднее арифметическое результатов определения плотности всех образцов, рассчитанное с точностью до 10 кг/м³.

При контроле средней плотности партии изделий и оценке классов средней плотности допускаются отклонения \(\rho_m \) от требований, приведенных в табл. 5, не более: для классов 0,8 и 1,0 - ±50 кг/м³, а для остальных классов ±100 кг/м³.

Водопоглощение определяют по ГОСТ 7025 при насыщении образцов водой температурой (20±5) °С при атмосферном давлении. Водопоглощение определяют на пяти целых образцах или их половинках. Образцы перед испытанием высушивают до постоянной
массы m_n г, и устанавливают на решетку в сосуд с водой комнатной температуры в один ряд с зазорами между образцами 2 см. Уровень воды должен быть выше верха образцов не менее, чем на 2 см. Образцы плотностью менее 1000 кг/м³ должны быть пригружены для предотвращения всплывания. Продолжительность выдерживания в воде 48±1 час.

Насыщенные образцы вынимают из воды, обтирают влажной тканью, взвешивают и фиксируют массу образца в насыщенном водой состоянии – m_n г. Водопоглощение по массе W_m определяют по формуле:

$$W_m = \frac{m_n - m_c}{m_c} \cdot 100\%$$ \hspace{1cm} (2.5)

За значение водопоглощения принимают среднее арифметическое результатов определения W_m всех образцов с точностью до 1 %.

Морозостойкость контролируют по ГОСТ 7025 методом объемного замораживания. Испытание проводят путем многократного замораживания насыщенных водой образцов в воздушной среде при температуре от минус 15 до минус 20°C и оттаивания в воде при температуре 15-20°C.

За марку по морозостойкости принимается установленное стандартом число циклов попеременного замораживания и оттаивания, которое выдерживают изделия без появления повреждений, не допускаемых стандартом: растрескивания, отколов, шелушения, выкрашивания и т.п. Растягивание – это появление или увеличение размера трещины после воздействия знакопеременных температур. Шелушение – это разрушение в виде отслоения от поверхности изделия тонких пластин. Выкрашивание – осыпание фрагментов поверхности изделия.

Испытание на морозостойкость кирпича и камня проводят на целых образцах или их половинках. На образцах после испытанием несмываемой краской фиксируют трещины, отколы ребер, углов и другие дефекты, допускаемые стандартом. Образцы с значительными дефектами испытанию не подлежат. Допускается для оценки морозостойкости использовать образцы после испытания на водопоглощение.

Образцы насыщают водой при температуре 15-20°C так же, как при определении водопоглощения.

Замораживание образцов производят в морозильной камере с принудительной вентиляцией и автоматическим регулированием температуры. Продолжительность замораживания при установившейся температуре должна быть не менее 4 часов.

После окончания замораживания образцы в контейнерах полностью погружают в емкость с водой температурой 15-20°C, которая поддерживается в течение всего периода оттаивания. Продолжительность оттаивания должна быть не менее половины продолжительности замораживания. Одно замораживание и последующее оттаивание составляют один цикл испытаний.

Состояние образцов оценивается осмотром после оттаивания через каждые 5 циклов при заданной марке изделий F25 и через каждые 10 циклов при марке F35 и более.

3. ОПРЕДЕЛЕНИЕ ПРОЧНОСТИ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ УЛЬТРАЗВУКОВЫМ ИМПУЛЬСНЫМ МЕТОДОМ

Описанный выше (раздел 2.5.2) стандартный метод определения прочности керамических кирпича и камня трудоемок и длителен. Кроме того, он делает непригодными для дальнейшего использования по значению большое количество изделий.

В то же время существует ряд методов неразрушающего контроля свойств материалов. Наиболее распространен для контроля прочности и однородности каменных строительных материалов получил ультразвуковой импульсный метод.

Сущность ультразвукового импульсного метода заключается в прогнозировании прочностных характеристик материала по скорости распространения в нем ультразвука с использованием корреляционной связи $R_{ck} = f(V)$, выражаемой в виде соответствующего тарировочного графика. Тарировочный график для данного материала получают заранее в результате «прозвучивания» образцов и последующего их испытания стандартным разрушающим способом.

В процессе испытания измеряют время распространения через материал переднего фронта продольной ультразвуковой волны t, мкс, и длину образца l, называемую базой прозвучивания. Длина образца измеряется с точностью до 1 мм. Скорость ультразвука вычисляют по формуле $V = l/t$, м/с.

Упрощенная блок-схема и внешний вид ультразвукового прибора приведены на рис. 4а, б.

Генератор зондирующих импульсов 1 вырабатывает электрические импульсы стандартной амплитуды и длительности и посылает
их на пьезопреобразователь-излучатель 2, в котором они преобразуются в ультразвуковые механические колебания. Эти колебания распространяются по материалу образца со скоростью, пропорциональной его плотности: чем она больше, тем выше скорость распространения механических колебаний.

![Diagram](image)

Рис. 4. Ультразвуковой измеритель прочности
а) блок-схема; б) внешний вид прибора PROCEQ Tico (Швейцария); в) принципиальная схема преобразования сигналов:
1 - генератор импульсов; 2 - излучатель УЗ импульсов;
3 - испытуемый образец; 4 - приёмник УЗ импульсов;
5 - нормализатор; 6 - усилитель сигнала; 7 - регистратор

Пройдя через образец материала 3, механические колебания попадают на пьезопреобразователь-приёмник 4, где они преобразуются в электрические импульсы. Однако, эти импульсы требуют корректировки формы и размеров в специальном устройстве - нормализаторе 5 до стандартных, с тем, чтобы обеспечить работоспособность всех систем прибора. Схема преобразования излучаемых высокоочастотных электрических импульсов в ультразвуковые механические колебания и обратно представлена на рис. 4,в.

Нормализованные электрические импульсы попадают в усилитель 6. Цифровой индикатор 7 показывает время прохождения импульса через образец между датчиком-излучателем и датчиком-приёмником с точностью до 0,01 мкс.

Прочность образцов при сжатии $R_{сл}$ в зависимости от скорости распространения ультразвуковых колебаний в испытуемых образцах определяют по тарировочному графику. Пример тарировочного графика для полнотелого керамического кирпича приведен на рис. 5.

![Graph](image)

Рис. 5. Тарировочный график зависимости $R_{сл} = f(V)$ для полнотелого керамического кирпича

Для измерения времени распространения ультразвука в материале пьезопреобразователя (шупы) устанавливают соосно на противоположных тычковых гранях кирпича. Для обеспечения надежного акустического контакта между образцом и поверхностью
щупов применяют контактную смазку (технический вазелин, солидол и т.д.). Мелкие раковины и неровности в месте контакта выравнивают пластилином, более крупные - механическими средствами, например, шлифованием.

4. ПРАКТИЧЕСКАЯ ЧАСТЬ

Работа 1. Ознакомление с основными требованиями стандарта к стеновым керамическим изделиям

Задание 1. Оценить соответствие образца керамического рядового глинополотного кирпича требованиям ГОСТ 530-2007 по размерам, форме и показателям внешнего вида.
1. Изучить требования стандарта к форме, размерам и показателям внешнего вида керамического рядового глинополотного кирпича (раздел 2.3 настоящих методических указаний).
2. Ознакомиться с методами оценки внешнего вида керамических стеновых изделий (раздел 2.5.1).
3. Произвести осмотр образца кирпича, определить его размеры и наличие дефектов. Результаты измерений занести в таблицу.
4. Сравнить полученные результаты со стандартными требованиями и сделать заключение о соответствии обследованного образца требованиям ГОСТа.

Задание 2. Определить сравнительные характеристики некоторых стеновых керамических изделий.
1. Определить размеры керамических изделий, рассчитать их объем и по табл. 1 установить обозначение размера.
2. Взвесить образцы, рассчитать их среднюю плотность, установить класс средней плотности и группу по теплотехническим характеристикам.
3. Рассчитать теплопроводность керамических изделий по формуле $\lambda = 1,16 \cdot \sqrt{0,0196 + 0,22d^2} - 0,16$, Вт/(м·°C), где d - относительная плотность, равная отношению средней плотности материала к плотности воды. Полученные данные занести в таблицу.
4. Ознакомиться с требованиями стандарта к водопоглощению, прочности и морозостойкости изделий (раздел 2.3).
5. Привести примеры условных обозначений изделий в соответствии с требованиями ГОСТ 530-2007 (раздел 2.2).

Задание 3. Рассчитать толщину сплошной кладки (условной наружной стены) из керамических изделий различной плотности, обеспечивающую минимально допускаемое по условиям энергосбережения сопротивление теплопередаче.

Сопротивление теплопередаче R_o (м²·°C)/Вт, ограждающей конструкции находится по формуле:

$$ R_0 = \frac{1}{\alpha_o} + R_k + \frac{1}{\alpha_n} $$

где α_o - коэффициент теплоотдачи внутренней поверхности ограждения, Вт/(м²·°C); R_k - термическое сопротивление ограждения, (м²·°C)/Вт; α_n - коэффициент теплоотдачи для зимних условий наружной поверхности ограждающей конструкции, Вт/(м²·°C).

Для однослойной конструкции (сплошная кладка) R_k зависит от ее толщины δ, м, и теплопроводности материала λ, Вт/(м²·°C), и вычисляется по формуле:

$$ R_k = \frac{\delta}{\lambda} $$

В соответствии со СНиП 23-02-2003 рекомендуемое минимально допускаемое по условиям энергосбережения сопротивление теплопередаче $(R_{скл})$ наружных стен жилых зданий в климатических условиях г. Москвы в зависимости от градусо-суток отопительного периода составляет 3,13 (м²·°C)/Вт. Однако в случае, когда удельный расход тепловой энергии на отопление здания оказывается меньше нормативного, СНиП допускает уменьшение рекомендуемого значения, но не ниже 0,63$R_{скл}$, что составляет 0,63·3,13 = 1,97 (м²·°C)/Вт.

Подставляя в формулу 4.1 вместо R_o его рекомендуемое значение 1,97 (м²·°C)/Вт, а также выбранные для рассмотрения случая значения α_o и α_n, получим:

$$ 1,97 = \frac{1}{8,7} \cdot \frac{\delta}{\lambda} + \frac{1}{23} $$

Отсюда толщина кладки, обеспечивающая минимально допускаемое по условиям энергосбережения сопротивление теплопередаче, может быть рассчитана по формуле $\delta = 8,7 \cdot 1,97 \lambda$.

- По известным значениям теплопроводности кладки из керамических изделий различной плотности на цементно-песчаном растворе (плотность раствора 1800 кг/м³) рассчи-
тать толщину условной наружной стены. Полученные данные занести в таблицу. В примечаниях следует дать рекомендации по обеспечению необходимого значения сопротивления теплопередаче при использовании данного вида изделий.

- Построить график зависимости толщины кладки из керамических изделий от ее средней плотности и сделать соответствующий вывод.

Работа 2. Определение прочности керамических изделий

Задание 1. Ознакомиться с требованиями ГОСТ 530-2007 к маркам керамического полнотелого кирпича по прочности и методами испытания кирпича на прочность при сжатии и при изгибе.

- Изучить требования ГОСТ 530-2007 к маркам по прочности полнотелого кирпича и пустотелых стеновых изделий (раздел 2.3).

- Ознакомиться с методами определения прочности керамических изделий при сжатии и при изгибе (раздел 2.5.2).

- Зарисовать схемы испытаний кирпича на изгиб и сжатие.

Задание 2. Определить прочность при сжатии керамического полнотелого кирпича ультразвуковым методом и сделать заключение о марке по прочности.

- Ознакомиться с принципом работы ультразвукового импульсного прибора и его блок-схемой (раздел 3).

- Измерить время прохождения ультразвука через образец, базу прозвучивания и рассчитать скорость ультразвука.

- По тарировочному графику (рис. 5) найти $R_{пр}$ для данного изделия. Полученные данные занести в таблицу и сделать заключение о марке по прочности данного керамического изделия.
оглавление

1. Общие сведения о строительной керамике ... 3
2. Керамические кирпич и камень ... 8
 2.1. Классификация и основные размеры изделий .. 8
 2.2. Условные обозначения ... 11
 2.3. Технические требования ... 12
 2.4. Контроль качества изделий ... 15
 2.5. Методы испытаний .. 16
 2.5.1. Оценка внешнего вида .. 16
 2.5.2. Определение прочности при сжатии и изгибе 17
 2.5.3. Определение средней плотности, водопоглощения и морозостойкости .. 21
3. Определение прочности керамических изделий ультразвуковым импульсным методом ... 23
4. Практическая часть .. 26
 Библиографический список ... 29